Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules
- URL: http://arxiv.org/abs/2002.00079v1
- Date: Fri, 31 Jan 2020 22:26:38 GMT
- Title: Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules
- Authors: Duzhe Wang, Haoda Fu, Po-Ling Loh
- Abstract summary: We present nonparametric algorithms for estimating optimal individualized treatment rules.
The proposed algorithms are based on the XGBoost algorithm, which is known as one of the most powerful algorithms in the machine learning literature.
- Score: 4.898659895355356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present nonparametric algorithms for estimating optimal individualized
treatment rules. The proposed algorithms are based on the XGBoost algorithm,
which is known as one of the most powerful algorithms in the machine learning
literature. Our main idea is to model the conditional mean of clinical outcome
or the decision rule via additive regression trees, and use the boosting
technique to estimate each single tree iteratively. Our approaches overcome the
challenge of correct model specification, which is required in current
parametric methods. The major contribution of our proposed algorithms is
providing efficient and accurate estimation of the highly nonlinear and complex
optimal individualized treatment rules that often arise in practice. Finally,
we illustrate the superior performance of our algorithms by extensive
simulation studies and conclude with an application to the real data from a
diabetes Phase III trial.
Related papers
- Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
We propose a novel algorithm for adaptive step length selection in the classical SGD framework.
Under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements.
We show that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.
arXiv Detail & Related papers (2023-05-17T06:22:11Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - Matrix Reordering for Noisy Disordered Matrices: Optimality and
Computationally Efficient Algorithms [9.245687221460654]
Motivated by applications in single-cell biology and metagenomics, we investigate the problem of matrixing based on a noisy monotone Toeplitz matrix model.
We establish fundamental statistical limit for this problem in a decision-theoretic framework and demonstrate that a constrained least squares rate.
To address this, we propose a novel-time adaptive sorting algorithm with guaranteed performance improvement.
arXiv Detail & Related papers (2022-01-17T14:53:52Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Optimizing the Parameters of A Physical Exercise Dose-Response Model: An
Algorithmic Comparison [1.0152838128195467]
The purpose of this research was to compare the robustness and performance of a local and global optimization algorithm when given the task of fitting the parameters of a common non-linear dose-response model utilized in the field of exercise physiology.
The results of our comparison over 1000 experimental runs demonstrate the superior performance of the evolutionary computation based algorithm to consistently achieve a stronger model fit and holdout performance in comparison to the local search algorithm.
arXiv Detail & Related papers (2020-12-16T22:06:35Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.