ReLayout: Integrating Relation Reasoning for Content-aware Layout Generation with Multi-modal Large Language Models
- URL: http://arxiv.org/abs/2507.05568v1
- Date: Tue, 08 Jul 2025 01:13:43 GMT
- Title: ReLayout: Integrating Relation Reasoning for Content-aware Layout Generation with Multi-modal Large Language Models
- Authors: Jiaxu Tian, Xuehui Yu, Yaoxing Wang, Pan Wang, Guangqian Guo, Shan Gao,
- Abstract summary: We introduce Re, a novel method that leverages relation-CoT to generate more reasonable and coherent layouts.<n>Specifically, we enhance layout annotations by introducing explicit relation definitions, such as region, salient, and margin between elements.<n>We also introduce a layout prototype sampler, which defines layout prototype features across three dimensions and quantifies distinct layout styles.
- Score: 7.288330685534444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Content-aware layout aims to arrange design elements appropriately on a given canvas to convey information effectively. Recently, the trend for this task has been to leverage large language models (LLMs) to generate layouts automatically, achieving remarkable performance. However, existing LLM-based methods fail to adequately interpret spatial relationships among visual themes and design elements, leading to structural and diverse problems in layout generation. To address this issue, we introduce ReLayout, a novel method that leverages relation-CoT to generate more reasonable and aesthetically coherent layouts by fundamentally originating from design concepts. Specifically, we enhance layout annotations by introducing explicit relation definitions, such as region, salient, and margin between elements, with the goal of decomposing the layout into smaller, structured, and recursive layouts, thereby enabling the generation of more structured layouts. Furthermore, based on these defined relationships, we introduce a layout prototype rebalance sampler, which defines layout prototype features across three dimensions and quantifies distinct layout styles. This sampler addresses uniformity issues in generation that arise from data bias in the prototype distribution balance process. Extensive experimental results verify that ReLayout outperforms baselines and can generate structural and diverse layouts that are more aligned with human aesthetics and more explainable.
Related papers
- CAL-RAG: Retrieval-Augmented Multi-Agent Generation for Content-Aware Layout Design [6.830055289299306]
CAL-RAG is a retrieval-augmented, agentic framework for content-aware layout generation.<n>We implement our framework using LangGraph and evaluate it on a benchmark rich in semantic variability.<n>Results demonstrate that combining retrieval augmentation with agentic multi-step reasoning yields a scalable, interpretable, and high-fidelity solution.
arXiv Detail & Related papers (2025-06-27T06:09:56Z) - CreatiLayout: Siamese Multimodal Diffusion Transformer for Creative Layout-to-Image Generation [78.21134311493303]
Diffusion models have been recognized for their ability to generate images that are not only visually appealing but also of high artistic quality.<n> layout-to-image generation has been proposed to leverage region-specific positions and descriptions to enable more precise and controllable generation.<n>We present a systematic solution that integrates the layout model, dataset, and planner for creative layout-to-image generation.
arXiv Detail & Related papers (2024-12-05T04:09:47Z) - GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts [53.568057283934714]
We propose a VLM-based framework that generates content-aware text logo layouts.
We introduce two model techniques to reduce the computation for processing multiple glyph images simultaneously.
To support instruction-tuning of out model, we construct two extensive text logo datasets, which are 5x more larger than the existing public dataset.
arXiv Detail & Related papers (2024-11-18T10:04:10Z) - LayoutDiT: Exploring Content-Graphic Balance in Layout Generation with Diffusion Transformer [46.67415676699221]
We introduce a framework that balances content and graphic features to generate high-quality, visually appealing layouts.
Specifically, we design an adaptive factor that optimize the model's awareness of the layout generation space.
We also introduce a graphic condition, the saliency bounding box, to bridge the modality difference between images in the visual domain and layouts in the geometric parameter domain.
arXiv Detail & Related papers (2024-07-21T17:58:21Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.<n>Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.<n>We develop an automated text-to-poster system that generates editable posters based on users' design intentions.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - A Parse-Then-Place Approach for Generating Graphic Layouts from Textual
Descriptions [50.469491454128246]
We use text as the guidance to create graphic layouts, i.e., Text-to-labeled, aiming to lower the design barriers.
Text-to-labeled is a challenging task, because it needs to consider the implicit, combined, and incomplete constraints from text.
We present a two-stage approach, named parse-then-place, to address this problem.
arXiv Detail & Related papers (2023-08-24T10:37:00Z) - Enhancing Visually-Rich Document Understanding via Layout Structure
Modeling [91.07963806829237]
We propose GraphLM, a novel document understanding model that injects layout knowledge into the model.
We evaluate our model on various benchmarks, including FUNSD, XFUND and CORD, and achieve state-of-the-art results.
arXiv Detail & Related papers (2023-08-15T13:53:52Z) - PosterLayout: A New Benchmark and Approach for Content-aware
Visual-Textual Presentation Layout [62.12447593298437]
Content-aware visual-textual presentation layout aims at arranging spatial space on the given canvas for pre-defined elements.
We propose design sequence formation (DSF) that reorganizes elements in layouts to imitate the design processes of human designers.
A novel CNN-LSTM-based conditional generative adversarial network (GAN) is presented to generate proper layouts.
arXiv Detail & Related papers (2023-03-28T12:48:36Z) - LayoutDM: Discrete Diffusion Model for Controllable Layout Generation [27.955214767628107]
Controllable layout generation aims at synthesizing plausible arrangement of element bounding boxes with optional constraints.
In this work, we try to solve a broad range of layout generation tasks in a single model that is based on discrete state-space diffusion models.
Our model, named LayoutDM, naturally handles the structured layout data in the discrete representation and learns to progressively infer a noiseless layout from the initial input.
arXiv Detail & Related papers (2023-03-14T17:59:47Z) - Constrained Graphic Layout Generation via Latent Optimization [17.05026043385661]
We generate graphic layouts that can flexibly incorporate design semantics, either specified implicitly or explicitly by a user.
Our approach builds on a generative layout model based on a Transformer architecture, and formulates the layout generation as a constrained optimization problem.
We show in the experiments that our approach is capable of generating realistic layouts in both constrained and unconstrained generation tasks with a single model.
arXiv Detail & Related papers (2021-08-02T13:04:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.