Hide in Plain Sight: Clean-Label Backdoor for Auditing Membership Inference
- URL: http://arxiv.org/abs/2411.16763v1
- Date: Sun, 24 Nov 2024 20:56:18 GMT
- Title: Hide in Plain Sight: Clean-Label Backdoor for Auditing Membership Inference
- Authors: Depeng Chen, Hao Chen, Hulin Jin, Jie Cui, Hong Zhong,
- Abstract summary: We propose a novel clean-label backdoor-based approach for stealthy data auditing.
Our approach employs an optimal trigger generated by a shadow model that mimics target model's behavior.
The proposed method enables robust data auditing through blackbox access, achieving high attack success rates across diverse datasets.
- Score: 16.893873979953593
- License:
- Abstract: Membership inference attacks (MIAs) are critical tools for assessing privacy risks and ensuring compliance with regulations like the General Data Protection Regulation (GDPR). However, their potential for auditing unauthorized use of data remains under explored. To bridge this gap, we propose a novel clean-label backdoor-based approach for MIAs, designed specifically for robust and stealthy data auditing. Unlike conventional methods that rely on detectable poisoned samples with altered labels, our approach retains natural labels, enhancing stealthiness even at low poisoning rates. Our approach employs an optimal trigger generated by a shadow model that mimics the target model's behavior. This design minimizes the feature-space distance between triggered samples and the source class while preserving the original data labels. The result is a powerful and undetectable auditing mechanism that overcomes limitations of existing approaches, such as label inconsistencies and visual artifacts in poisoned samples. The proposed method enables robust data auditing through black-box access, achieving high attack success rates across diverse datasets and model architectures. Additionally, it addresses challenges related to trigger stealthiness and poisoning durability, establishing itself as a practical and effective solution for data auditing. Comprehensive experiments validate the efficacy and generalizability of our approach, outperforming several baseline methods in both stealth and attack success metrics.
Related papers
- BoBa: Boosting Backdoor Detection through Data Distribution Inference in Federated Learning [26.714674251814586]
Federated learning is susceptible to poisoning attacks due to its decentralized nature.
We propose a novel distribution-aware anomaly detection mechanism, BoBa, to address this problem.
arXiv Detail & Related papers (2024-07-12T19:38:42Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Can We Trust the Unlabeled Target Data? Towards Backdoor Attack and Defense on Model Adaptation [120.42853706967188]
We explore the potential backdoor attacks on model adaptation launched by well-designed poisoning target data.
We propose a plug-and-play method named MixAdapt, combining it with existing adaptation algorithms.
arXiv Detail & Related papers (2024-01-11T16:42:10Z) - DataElixir: Purifying Poisoned Dataset to Mitigate Backdoor Attacks via
Diffusion Models [12.42597979026873]
We propose DataElixir, a novel sanitization approach tailored to purify poisoned datasets.
We leverage diffusion models to eliminate trigger features and restore benign features, thereby turning the poisoned samples into benign ones.
Experiments conducted on 9 popular attacks demonstrates that DataElixir effectively mitigates various complex attacks while exerting minimal impact on benign accuracy.
arXiv Detail & Related papers (2023-12-18T09:40:38Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
Federated Learning is designed to address privacy concerns in learning models.
New distributed paradigm safeguards data privacy but differentiates the attack surface due to the server's inaccessibility to local datasets.
arXiv Detail & Related papers (2022-12-05T01:52:32Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
We propose a weakly- and semi-supervised object detection framework (WSSOD)
An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images.
The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings.
arXiv Detail & Related papers (2021-05-21T11:58:50Z) - Black-Box Dissector: Towards Erasing-based Hard-Label Model Stealing
Attack [90.6076825117532]
Model stealing attack aims to create a substitute model that steals the ability of the victim target model.
Most of the existing methods depend on the full probability outputs from the victim model, which is unavailable in most realistic scenarios.
We propose a novel hard-label model stealing method termed emphblack-box dissector, which includes a CAM-driven erasing strategy to mine the hidden information in hard labels from the victim model.
arXiv Detail & Related papers (2021-05-03T04:12:31Z) - Detecting Anomalies Through Contrast in Heterogeneous Data [21.56932906044264]
We propose Contrastive Learning based Heterogeneous Anomaly Detector to address shortcomings of prior models.
Our model uses an asymmetric autoencoder that can effectively handle large arity categorical variables.
We provide a qualitative study to showcase the effectiveness of our model in detecting anomalies in timber trade.
arXiv Detail & Related papers (2021-04-02T17:21:12Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.