Learnable quantum spectral filters for hybrid graph neural networks
- URL: http://arxiv.org/abs/2507.05640v2
- Date: Fri, 11 Jul 2025 15:46:42 GMT
- Title: Learnable quantum spectral filters for hybrid graph neural networks
- Authors: Ammar Daskin,
- Abstract summary: We show that the eigenspace of the Laplacian operator of a graph can be approximated by using QFT based circuit.<n>For an $Ntimes N$ Laplacian, this approach yields an approximate-depth circuit requiring only $n=log(Nimat)$ qubits.<n>We then apply a classical neural network prediction head to the output of the circuit to construct a complete graph neural network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we describe a parameterized quantum circuit that can be considered as convolutional and pooling layers for graph neural networks. The circuit incorporates the parameterized quantum Fourier circuit where the qubit connections for the controlled gates derived from the Laplacian operator. Specifically, we show that the eigenspace of the Laplacian operator of a graph can be approximated by using QFT based circuit whose connections are determined from the adjacency matrix. For an $N\times N$ Laplacian, this approach yields an approximate polynomial-depth circuit requiring only $n=log(N)$ qubits. These types of circuits can eliminate the expensive classical computations for approximating the learnable functions of the Laplacian through Chebyshev polynomial or Taylor expansions. Using this circuit as a convolutional layer provides an $n-$ dimensional probability vector that can be considered as the filtered and compressed graph signal. Therefore, the circuit along with the measurement can be considered a very efficient convolution plus pooling layer that transforms an $N$-dimensional signal input into $n-$dimensional signal with an exponential compression. We then apply a classical neural network prediction head to the output of the circuit to construct a complete graph neural network. Since the circuit incorporates geometric structure through its graph connection-based approach, we present graph classification results for the benchmark datasets listed in TUDataset library. Using only [1-100] learnable parameters for the quantum circuit and minimal classical layers (1000-5000 parameters) in a generic setting, the obtained results are comparable to and in some cases better than many of the baseline results, particularly for the cases when geometric structure plays a significant role.
Related papers
- A Spectral Interpretation of Redundancy in a Graph Reservoir [51.40366905583043]
This work revisits the definition of the reservoir in the Multiresolution Reservoir Graph Neural Network (MRGNN)<n>It proposes a variant based on a Fairing algorithm originally introduced in the field of surface design in computer graphics.<n>The core contribution of the paper lies in the theoretical analysis of the algorithm from a random walks perspective.
arXiv Detail & Related papers (2025-07-17T10:02:57Z) - Generalized tensor transforms and their applications in classical and quantum computing [0.0]
We introduce a novel framework for Generalized Transforms (GTTs), constructed through an $n$-fold tensor product of an arbitrary $b times b$ unitary matrix $W$.<n>For quantum applications, our GTT-based algorithm achieves both gate complexity and circuit depth of $O(log_b N)$, where $N = bn$ denotes the length of the vector input.<n>We explore diverse applications of GTTs in quantum computing, including quantum state compression and transmission, function encoding and quantum digital signal processing.
arXiv Detail & Related papers (2025-07-03T08:28:00Z) - Automatically Identifying Local and Global Circuits with Linear Computation Graphs [45.760716193942685]
We introduce our circuit discovery pipeline with Sparse Autoencoders (SAEs) and a variant called Transcoders.
Our methods do not require linear approximation to compute the causal effect of each node.
We analyze three kinds of circuits in GPT-2 Small: bracket, induction, and Indirect Object Identification circuits.
arXiv Detail & Related papers (2024-05-22T17:50:04Z) - AltGraph: Redesigning Quantum Circuits Using Generative Graph Models for Efficient Optimization [2.089191490381739]
AltGraph is a novel search-based circuit transformation approach.
It generates equivalent quantum circuits using existing generative graph models.
It achieves on average a 37.55% reduction in the number of gates and a 37.75% reduction in the circuit depth post-transpiling.
arXiv Detail & Related papers (2024-02-23T19:01:47Z) - A quantum neural network framework for scalable quantum circuit approximation of unitary matrices [0.0]
We develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates.<n>Layers of the neural networks are defined by product of certain elements of the Standard Recursive Block Basis.
arXiv Detail & Related papers (2024-02-07T22:39:39Z) - Challenges and opportunities in the supervised learning of quantum
circuit outputs [0.0]
Deep neural networks have proven capable of predicting some output properties of relevant random quantum circuits.
We investigate if and to what extent neural networks can learn to predict the output expectation values of circuits often employed in variational quantum algorithms.
arXiv Detail & Related papers (2024-02-07T16:10:13Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Tunable Quantum Neural Networks in the QPAC-Learning Framework [0.0]
We investigate the performances of tunable quantum neural networks in the Quantum Probably Approximately Correct (QPAC) learning framework.
In order to tune the network so that it can approximate a target concept, we have devised and implemented an algorithm based on amplitude amplification.
The numerical results show that this approach can efficiently learn concepts from a simple class.
arXiv Detail & Related papers (2022-05-03T14:10:15Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Tensor Ring Parametrized Variational Quantum Circuits for Large Scale
Quantum Machine Learning [28.026962110693695]
We propose an algorithm that compresses the quantum state within the circuit using a tensor ring representation.
The storage and computational time increases linearly in the number of qubits and number of layers, as compared to the exponential increase with exact simulation algorithms.
We achieve a test accuracy of 83.33% on Iris dataset and a maximum of 99.30% and 76.31% on binary and ternary classification of MNIST dataset.
arXiv Detail & Related papers (2022-01-21T19:54:57Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
We introduce a quantum circuit mapping, QXX, and its machine learning version, QXX-MLP.
The latter infers automatically the optimal QXX parameter values such that the layed out circuit has a reduced depth.
We present empiric evidence for the feasibility of learning the layout method using approximation.
arXiv Detail & Related papers (2020-07-29T05:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.