論文の概要: Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems
- arxiv url: http://arxiv.org/abs/2309.09250v1
- Date: Sun, 17 Sep 2023 12:06:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 16:44:06.980789
- Title: Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems
- Title(参考訳): 画像逆問題に対するconvex latent-optimized adversarial regularizers
- Authors: Huayu Wang, Chen Luo, Taofeng Xie, Qiyu Jin, Guoqing Chen, Zhuo-Xu
Cui, Dong Liang
- Abstract要約: 本稿では,新しいデータ駆動型パラダイムであるConvex Latent-d Adrial Regularizers (CLEAR)を紹介する。
CLEARは、ディープラーニング(DL)と変分正規化の融合を表す。
本手法は従来型のデータ駆動手法と従来型の正規化手法を一貫して上回っている。
- 参考スコア(独自算出の注目度): 8.33626757808923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, data-driven techniques have demonstrated remarkable effectiveness
in addressing challenges related to MR imaging inverse problems. However, these
methods still exhibit certain limitations in terms of interpretability and
robustness. In response, we introduce Convex Latent-Optimized Adversarial
Regularizers (CLEAR), a novel and interpretable data-driven paradigm. CLEAR
represents a fusion of deep learning (DL) and variational regularization.
Specifically, we employ a latent optimization technique to adversarially train
an input convex neural network, and its set of minima can fully represent the
real data manifold. We utilize it as a convex regularizer to formulate a
CLEAR-informed variational regularization model that guides the solution of the
imaging inverse problem on the real data manifold. Leveraging its inherent
convexity, we have established the convergence of the projected subgradient
descent algorithm for the CLEAR-informed regularization model. This convergence
guarantees the attainment of a unique solution to the imaging inverse problem,
subject to certain assumptions. Furthermore, we have demonstrated the
robustness of our CLEAR-informed model, explicitly showcasing its capacity to
achieve stable reconstruction even in the presence of measurement interference.
Finally, we illustrate the superiority of our approach using MRI reconstruction
as an example. Our method consistently outperforms conventional data-driven
techniques and traditional regularization approaches, excelling in both
reconstruction quality and robustness.
- Abstract(参考訳): 近年,MR画像逆問題に対処する上で,データ駆動技術が顕著な効果を示した。
しかし、これらの手法は解釈可能性や堅牢性の観点からも一定の制限を課している。
これに対して,新しいデータ駆動型パラダイムであるConvex Latent-Optimized Adversarial Regularizers (CLEAR)を紹介する。
CLEARは、ディープラーニング(DL)と変分正規化の融合を表す。
具体的には,入力凸ニューラルネットワークを逆行的に学習するために潜在最適化手法を用い,そのミニマセットは実データ多様体を完全に表現できる。
我々は凸正規化器として利用し、実データ多様体上の画像逆問題の解を導出するCLEARインフォームド変分正規化モデルを定式化する。
その固有凸性を利用して、CLEARインフォームド正規化モデルに対する予測下降降下アルゴリズムの収束を確立した。
この収束は、ある種の仮定に基づく画像逆問題に対する一意な解の達成を保証する。
さらに, CLEARインフォームドモデルのロバスト性を実証し, 測定干渉があっても安定的な再構成を実現する能力を示す。
最後に、MRI再構成を例として、我々のアプローチの優位性について述べる。
本手法は,従来のデータ駆動手法と従来の正規化手法を一貫して上回り,復元品質と堅牢性の両方に優れる。
関連論文リスト
- Coverage-Validity-Aware Algorithmic Recourse [23.643366441803796]
本稿では,モデルシフトに対するロバスト性を示すモデルに依存しない談話を生成する新しい枠組みを提案する。
筆者らのフレームワークはまず,非線形(ブラックボックス)モデルのカバレッジを意識した線形サロゲートを構築する。
我々の代理は近似超平面を直感的に推し進め、頑健なだけでなく解釈可能なレコースも容易にすることを示した。
論文 参考訳(メタデータ) (2023-11-19T15:21:49Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
画素空間におけるトレーニング拡散モデルは、データ集約的かつ計算的に要求される。
非常に低次元空間で動作する潜在拡散モデルは、これらの課題に対する解決策を提供する。
我々は,事前学習した潜在拡散モデルを用いて,一般的な逆問題を解決するアルゴリズムであるtextitReSampleを提案する。
論文 参考訳(メタデータ) (2023-07-16T18:42:01Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
本稿では,事前学習したテキスト・画像拡散モデルにカプセル化された事前知識を視覚的超解像に活用するための新しいアプローチを提案する。
時間認識エンコーダを用いることで、事前学習した合成モデルを変更することなく、有望な復元結果が得られる。
論文 参考訳(メタデータ) (2023-05-11T17:55:25Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Deep unfolding as iterative regularization for imaging inverse problems [6.485466095579992]
ディープ展開法は、反復アルゴリズムを通じてディープニューラルネットワーク(DNN)の設計を導く。
展開されたDNNが安定して収束することを証明する。
提案手法が従来の展開法より優れていることを示す。
論文 参考訳(メタデータ) (2022-11-24T07:38:47Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Learned convex regularizers for inverse problems [3.294199808987679]
本稿では,逆問題に対する正規化器として,データ適応型入力ニューラルネットワーク(ICNN)を学習することを提案する。
パラメータ空間における単調な誤差を反復で減少させる部分次アルゴリズムの存在を実証する。
提案した凸正則化器は, 逆問題に対する最先端のデータ駆動技術に対して, 少なくとも競争力があり, 時には優位であることを示す。
論文 参考訳(メタデータ) (2020-08-06T18:58:35Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
本稿では,近年のアーキテクチャ設計パターンを深層学習から活用する,学習可能な汎用正規化手法を提案する。
本稿では,古典的画像復元と医用画像再構成問題に対する最先端の性能について述べる。
論文 参考訳(メタデータ) (2020-01-14T19:01:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。