Efficient Training of Large-Scale AI Models Through Federated Mixture-of-Experts: A System-Level Approach
- URL: http://arxiv.org/abs/2507.05685v1
- Date: Tue, 08 Jul 2025 05:30:37 GMT
- Title: Efficient Training of Large-Scale AI Models Through Federated Mixture-of-Experts: A System-Level Approach
- Authors: Xiaobing Chen, Boyang Zhang, Xiangwei Zhou, Mingxuan Sun, Shuai Zhang, Songyang Zhang, Geoffrey Ye Li,
- Abstract summary: This article highlights a critical, yet underexplored concept: the absence of robust quantitative strategies for dynamic client-expert alignment.<n>We propose a conceptual system design for intelligent client-expert alignment that incorporates dynamic fitness scoring, global expert load monitoring, and client capacity profiling.
- Score: 52.79991638077892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Federated Learning (FL) and Mixture-of-Experts (MoE) presents a compelling pathway for training more powerful, large-scale artificial intelligence models (LAMs) on decentralized data while preserving privacy. However, efficient federated training of these complex MoE-structured LAMs is hindered by significant system-level challenges, particularly in managing the interplay between heterogeneous client resources and the sophisticated coordination required for numerous specialized experts. This article highlights a critical, yet underexplored concept: the absence of robust quantitative strategies for dynamic client-expert alignment that holistically considers varying client capacities and the imperative for system-wise load balancing. Specifically, we propose a conceptual system design for intelligent client-expert alignment that incorporates dynamic fitness scoring, global expert load monitoring, and client capacity profiling. By tackling these systemic issues, we can unlock more scalable, efficient, and robust training mechanisms {with fewer communication rounds for convergence}, paving the way for the widespread deployment of large-scale federated MoE-structured LAMs in edge computing with ultra-high communication efficiency.
Related papers
- Hypernetworks for Model-Heterogeneous Personalized Federated Learning [13.408669475480824]
We propose a server-side hypernetwork that takes client-specific embedding vectors as input and outputs personalized parameters tailored to each client's heterogeneous model.<n>To promote knowledge sharing and reduce computation, we introduce a multi-head structure within the hypernetwork, allowing clients with similar model sizes to share heads.<n>Our framework does not rely on external datasets and does not require disclosure of client model architectures.
arXiv Detail & Related papers (2025-07-30T02:24:26Z) - Compositional Learning for Modular Multi-Agent Self-Organizing Networks [0.7122137885660501]
Self-organizing networks face challenges from complex parameter interdependencies and conflicting objectives.<n>This study introduces two compositional learning approaches-Compositional Deep Reinforcement Learning (CDRL) and Compositional Predictive Decision-Making (CPDM)<n>We propose a modular, two-tier framework with cell-level and cell-pair-level agents to manage heterogeneous agent granularities while reducing model complexity.
arXiv Detail & Related papers (2025-06-03T08:33:18Z) - Deploying Large AI Models on Resource-Limited Devices with Split Federated Learning [39.73152182572741]
This paper proposes a novel framework, named Quantized Split Federated Fine-Tuning Large AI Model (SFLAM)<n>By partitioning the training load between edge devices and servers, SFLAM can facilitate the operation of large models on devices.<n>SFLAM incorporates quantization management, power control, and bandwidth allocation strategies to enhance training efficiency.
arXiv Detail & Related papers (2025-04-12T07:55:11Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - FedMoE-DA: Federated Mixture of Experts via Domain Aware Fine-grained Aggregation [22.281467168796645]
Federated learning (FL) is a collaborative machine learning approach that enables multiple clients to train models without sharing their private data.<n>We propose FedMoE-DA, a new FL model training framework that incorporates a novel domain-aware, fine-grained aggregation strategy to enhance the robustness, personalizability, and communication efficiency simultaneously.
arXiv Detail & Related papers (2024-11-04T14:29:04Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Federated Learning with Flexible Architectures [12.800116749927266]
This paper introduces Federated Learning with Flexible Architectures (FedFA), an FL training algorithm that allows clients to train models of different widths and depths.
FedFA incorporates the layer grafting technique to align clients' local architectures with the largest network architecture in the FL system during model aggregation.
arXiv Detail & Related papers (2024-06-14T09:44:46Z) - Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
This paper develops generative artificial intelligence (AI) agents for model formulation and then applies a mixture of experts (MoE) to design transmission strategies.
Specifically, we leverage large language models (LLMs) to build an interactive modeling paradigm.
We propose an MoE-proximal policy optimization (PPO) approach to solve the formulated problem.
arXiv Detail & Related papers (2024-04-14T03:44:54Z) - FedAA: A Reinforcement Learning Perspective on Adaptive Aggregation for Fair and Robust Federated Learning [5.622065847054885]
Federated Learning (FL) has emerged as a promising approach for privacy-preserving model training across decentralized devices.<n>We introduce a novel method called textbfFedAA, which optimize client contributions via textbfAdaptive textbfAggregation to enhance model robustness against malicious clients.
arXiv Detail & Related papers (2024-02-08T10:22:12Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.