A novel framework for fully-automated co-registration of intravascular ultrasound and optical coherence tomography imaging data
- URL: http://arxiv.org/abs/2507.05883v1
- Date: Tue, 08 Jul 2025 11:12:44 GMT
- Title: A novel framework for fully-automated co-registration of intravascular ultrasound and optical coherence tomography imaging data
- Authors: Xingwei He, Kit Mills Bransby, Ahmet Emir Ulutas, Thamil Kumaran, Nathan Angelo Lecaros Yap, Gonul Zeren, Hesong Zeng, Yaojun Zhang, Andreas Baumbach, James Moon, Anthony Mathur, Jouke Dijkstra, Qianni Zhang, Lorenz Raber, Christos V Bourantas,
- Abstract summary: Deep-learning framework developed to allow longitudinal and circumferential co-registration of intravascular ultrasound (IVUS) and optical coherence tomography ( OCT) images.
- Score: 2.6347217363196633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aims: To develop a deep-learning (DL) framework that will allow fully automated longitudinal and circumferential co-registration of intravascular ultrasound (IVUS) and optical coherence tomography (OCT) images. Methods and results: Data from 230 patients (714 vessels) with acute coronary syndrome that underwent near-infrared spectroscopy (NIRS)-IVUS and OCT imaging in their non-culprit vessels were included in the present analysis. The lumen borders annotated by expert analysts in 61,655 NIRS-IVUS and 62,334 OCT frames, and the side branches and calcific tissue identified in 10,000 NIRS-IVUS frames and 10,000 OCT frames, were used to train DL solutions for the automated extraction of these features. The trained DL solutions were used to process NIRS-IVUS and OCT images and their output was used by a dynamic time warping algorithm to co-register longitudinally the NIRS-IVUS and OCT images, while the circumferential registration of the IVUS and OCT was optimized through dynamic programming. On a test set of 77 vessels from 22 patients, the DL method showed high concordance with the expert analysts for the longitudinal and circumferential co-registration of the two imaging sets (concordance correlation coefficient >0.99 for the longitudinal and >0.90 for the circumferential co-registration). The Williams Index was 0.96 for longitudinal and 0.97 for circumferential co-registration, indicating a comparable performance to the analysts. The time needed for the DL pipeline to process imaging data from a vessel was <90s. Conclusion: The fully automated, DL-based framework introduced in this study for the co-registration of IVUS and OCT is fast and provides estimations that compare favorably to the expert analysts. These features renders it useful in research in the analysis of large-scale data collected in studies that incorporate multimodality imaging to characterize plaque composition.
Related papers
- Real-Time Guidewire Tip Tracking Using a Siamese Network for Image-Guided Endovascular Procedures [27.037820619664654]
This paper focuses on guidewire tip tracking tasks during image-guided therapy for cardiovascular diseases.<n>A novel tracking framework based on a Siamese network with dual attention mechanisms combines self- and cross-attention strategies for robust tip tracking.<n>The framework maintains an average processing speed of 57.2 frames per second, meeting the temporal demands of endovascular imaging.
arXiv Detail & Related papers (2025-06-25T02:34:00Z) - Robotic Ultrasound-Guided Femoral Artery Reconstruction of Anatomically-Representative Phantoms [2.1113382954657594]
This study is the first to validate an autonomous robotic system for U.S. scanning of the femoral artery on a diverse set of patient-specific phantoms.<n>We introduce a video-based deep learning US segmentation network tailored for vascular imaging, enabling improved 3D arterial reconstruction.
arXiv Detail & Related papers (2025-03-09T22:20:25Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Deep-Learning-based Vasculature Extraction for Single-Scan Optical
Coherence Tomography Angiography [9.77526300425824]
We propose a vasculature extraction pipeline that uses only one-repeated OCT scan to generate OCTA images.
The pipeline is based on the proposed Vasculature Extraction Transformer (VET), which leverages convolutional projection to better learn the spatial relationships between image patches.
arXiv Detail & Related papers (2023-04-17T13:55:26Z) - Longitudinal Multimodal Transformer Integrating Imaging and Latent
Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification [4.002181247287472]
We propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from EHRs for solitary pulmonary nodule (SPN) classification.
We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans.
arXiv Detail & Related papers (2023-04-06T03:03:07Z) - Morphology-based non-rigid registration of coronary computed tomography and intravascular images through virtual catheter path optimization [0.2631367460046713]
We present a morphology-based framework for the rigid and non-rigid matching of intravascular images to CCTA images.
Our framework reduces the manual effort required to conduct large-scale multi-modal clinical studies.
arXiv Detail & Related papers (2022-12-30T21:48:32Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Towards Autonomous Atlas-based Ultrasound Acquisitions in Presence of
Articulated Motion [48.52403516006036]
This paper proposes a vision-based approach allowing autonomous robotic US limb scanning.
To this end, an atlas MRI template of a human arm with annotated vascular structures is used to generate trajectories.
In all cases, the system can successfully acquire the planned vascular structure on volunteers' limbs.
arXiv Detail & Related papers (2022-08-10T15:39:20Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Microvasculature Segmentation and Inter-capillary Area Quantification of
the Deep Vascular Complex using Transfer Learning [0.0]
We demonstrate accurate segmentation of the superficial superficial vascular complex and deep vascular plexus using a convolutional neural network (CNN) for quantitative analysis.
We used transfer learning from a CNN trained on 76 images from smaller FOVs of the SCP acquired using different OCT systems.
arXiv Detail & Related papers (2020-03-19T22:27:02Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.