Morphology-based non-rigid registration of coronary computed tomography and intravascular images through virtual catheter path optimization
- URL: http://arxiv.org/abs/2301.00060v2
- Date: Wed, 02 Oct 2024 11:04:09 GMT
- Title: Morphology-based non-rigid registration of coronary computed tomography and intravascular images through virtual catheter path optimization
- Authors: Karim Kadry, Abhishek Karmakar, Andreas Schuh, Kersten Peterson, Michiel Schaap, David Marlevi, Charles Taylor, Elazer Edelman, Farhad Nezami,
- Abstract summary: We present a morphology-based framework for the rigid and non-rigid matching of intravascular images to CCTA images.
Our framework reduces the manual effort required to conduct large-scale multi-modal clinical studies.
- Score: 0.2631367460046713
- License:
- Abstract: Coronary computed tomography angiography (CCTA) provides 3D information on obstructive coronary artery disease, but cannot fully visualize high-resolution features within the vessel wall. Intravascular imaging, in contrast, can spatially resolve atherosclerotic in cross sectional slices, but is limited in capturing 3D relationships between each slice. Co-registering CCTA and intravascular images enables a variety of clinical research applications but is time consuming and user-dependent. This is due to intravascular images suffering from non-rigid distortions arising from irregularities in the imaging catheter path. To address these issues, we present a morphology-based framework for the rigid and non-rigid matching of intravascular images to CCTA images. To do this, we find the optimal virtual catheter path that samples the coronary artery in CCTA image space to recapitulate the coronary artery morphology observed in the intravascular image. We validate our framework on a multi-center cohort of 40 patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our registration approach significantly outperforms other approaches for bifurcation alignment. By providing a differentiable framework for multi-modal vascular co-registration, our framework reduces the manual effort required to conduct large-scale multi-modal clinical studies and enables the development of machine learning-based co-registration approaches.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
We propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images.
AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy.
Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm.
arXiv Detail & Related papers (2024-06-13T01:04:47Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
The presented method aims to enhance Digital Subtraction Angiography (DSA) image series by highlighting critical information via automatic classification of vessels.
The method was tested on clinical DSA images series and demonstrated efficient differentiation between arteries and veins.
arXiv Detail & Related papers (2024-02-15T00:29:53Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
Intravascular ultrasound and optical coherence tomography are widely available for characterizing coronary stenoses.
We propose a convolutional neural network model and optimize its performance using a new multi-term loss function.
Our model segments two classes of major artifacts and detects the anatomical layers within the thickened vessel wall regions.
arXiv Detail & Related papers (2021-05-11T15:52:31Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Patch-based field-of-view matching in multi-modal images for
electroporation-based ablations [0.6285581681015912]
Multi-modal imaging sensors are currently involved at different steps of an interventional therapeutic work-flow.
Merging this information relies on a correct spatial alignment of the observed anatomy between the acquired images.
We show that a regional registration approach using voxel patches provides a good structural compromise between the voxel-wise and "global shifts" approaches.
arXiv Detail & Related papers (2020-11-09T11:27:45Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Coronary Wall Segmentation in CCTA Scans via a Hybrid Net with Contours
Regularization [35.428157385902644]
We propose a novel boundary detection method for coronary arteries.
Our method can produce smooth closed boundaries outperforming the state-of-the-art accuracy.
arXiv Detail & Related papers (2020-02-27T17:06:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.