論文の概要: Feature-Based vs. GAN-Based Learning from Demonstrations: When and Why
- arxiv url: http://arxiv.org/abs/2507.05906v1
- Date: Tue, 08 Jul 2025 11:45:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:37.954395
- Title: Feature-Based vs. GAN-Based Learning from Demonstrations: When and Why
- Title(参考訳): 特徴に基づく対GANに基づくデモからの学習--いつ,なぜ
- Authors: Chenhao Li, Marco Hutter, Andreas Krause,
- Abstract要約: この調査は、デモから学ぶ機能ベースのアプローチとGANベースのアプローチの比較分析を提供する。
特徴に基づく手法とGANに基づく手法の2分法はますます曖昧になっていると我々は主張する。
- 参考スコア(独自算出の注目度): 50.191655141020505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This survey provides a comparative analysis of feature-based and GAN-based approaches to learning from demonstrations, with a focus on the structure of reward functions and their implications for policy learning. Feature-based methods offer dense, interpretable rewards that excel at high-fidelity motion imitation, yet often require sophisticated representations of references and struggle with generalization in unstructured settings. GAN-based methods, in contrast, use implicit, distributional supervision that enables scalability and adaptation flexibility, but are prone to training instability and coarse reward signals. Recent advancements in both paradigms converge on the importance of structured motion representations, which enable smoother transitions, controllable synthesis, and improved task integration. We argue that the dichotomy between feature-based and GAN-based methods is increasingly nuanced: rather than one paradigm dominating the other, the choice should be guided by task-specific priorities such as fidelity, diversity, interpretability, and adaptability. This work outlines the algorithmic trade-offs and design considerations that underlie method selection, offering a framework for principled decision-making in learning from demonstrations.
- Abstract(参考訳): 本調査は, 報酬関数の構造と政策学習への影響に着目し, 実演から学ぶための特徴に基づくアプローチとGANに基づくアプローチの比較分析を行う。
特徴に基づく手法は、高忠実な動きの模倣に優れた高密度で解釈可能な報酬を提供するが、しばしば参照の洗練された表現を必要とし、非構造化環境での一般化に苦慮する。
対照的に、GANベースの手法では、拡張性と適応性を実現するために暗黙的な分散監視を使用するが、不安定性や粗い報酬信号のトレーニングは困難である。
両パラダイムの最近の進歩は、よりスムーズな遷移、制御可能な合成、改善されたタスク統合を可能にする構造化された動き表現の重要性に収束する。
1つのパラダイムが他方を支配しているのではなく、その選択は、忠実さ、多様性、解釈可能性、適応性といったタスク固有の優先順位によって導かれるべきです。
本研究は,手法選択の基盤となるアルゴリズム上のトレードオフと設計上の考察を概説し,実演から学ぶ上での原則的意思決定の枠組みを提供する。
関連論文リスト
- Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
教師なしの人物再識別(USL-VI-ReID)は、モデル学習のための人間のアノテーションを使わずに、同じ人物の歩行者像を異なるモードでマッチングすることを目指している。
従来の手法では、ラベルアソシエーションアルゴリズムを用いて異質な画像の擬似ラベルを統一し、グローバルな特徴学習のためのコントラスト学習フレームワークを設計していた。
本稿では,各モダリティによって強調される特定のきめ細かいパターンを対象とするSALCR(Semantic-Aligned Learning with Collaborative Refinement)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-27T13:58:12Z) - Demonstration Selection for In-Context Learning via Reinforcement Learning [16.103533806505403]
Relevance-Diversity Enhanced Selection (RDES)は、多様な参照デモの選択を最適化するための革新的なアプローチである。
RDESはQ-learningのようなフレームワークとPPOベースの変種を使用して、多様性を最大化するデモを動的に識別する。
RDESは10基のベースラインに比べて性能を著しく向上することを示した。
論文 参考訳(メタデータ) (2024-12-05T08:33:52Z) - Independence Constrained Disentangled Representation Learning from Epistemological Perspective [13.51102815877287]
Disentangled Representation Learningは、データ生成プロセスにおいて意味論的に意味のある潜伏変数を識別するデータエンコーダをトレーニングすることで、ディープラーニングメソッドの説明可能性を向上させることを目的としている。
不整合表現学習の目的については合意が得られない。
本稿では,相互情報制約と独立性制約を統合した非絡み合い表現学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:00:59Z) - Hierarchical Decision Making Based on Structural Information Principles [19.82391136775341]
本稿では,階層的意思決定のための構造情報原則に基づく新しいフレームワーク,すなわちSIDMを提案する。
本稿では,過去の状態-行動軌跡を処理し,状態と行動の抽象表現を構築する抽象化機構を提案する。
単エージェントシナリオのためのスキルベース学習手法と,多エージェントシナリオのためのロールベースの協調手法を開発し,そのどちらも,パフォーマンス向上のために様々な基礎アルゴリズムを柔軟に統合することができる。
論文 参考訳(メタデータ) (2024-04-15T13:02:00Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Flow Factorized Representation Learning [109.51947536586677]
本稿では、異なる入力変換を定義する潜在確率パスの別個のセットを規定する生成モデルを提案する。
本モデルは,ほぼ同変モデルに近づきながら,標準表現学習ベンチマークにおいて高い確率を達成することを示す。
論文 参考訳(メタデータ) (2023-09-22T20:15:37Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。