On the Effectiveness of Methods and Metrics for Explainable AI in Remote Sensing Image Scene Classification
- URL: http://arxiv.org/abs/2507.05916v1
- Date: Tue, 08 Jul 2025 12:00:24 GMT
- Title: On the Effectiveness of Methods and Metrics for Explainable AI in Remote Sensing Image Scene Classification
- Authors: Jonas Klotz, Tom Burgert, Begüm Demir,
- Abstract summary: Development of explainable artificial intelligence (xAI) methods for scene classification problems has attracted great attention in remote sensing (RS)<n>Most xAI methods and the related evaluation metrics in RS are initially developed for natural images considered in computer vision (CV)<n>This paper investigates the effectiveness of explanation methods and metrics in the context of RS image scene classification.
- Score: 2.725507329935916
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The development of explainable artificial intelligence (xAI) methods for scene classification problems has attracted great attention in remote sensing (RS). Most xAI methods and the related evaluation metrics in RS are initially developed for natural images considered in computer vision (CV), and their direct usage in RS may not be suitable. To address this issue, in this paper, we investigate the effectiveness of explanation methods and metrics in the context of RS image scene classification. In detail, we methodologically and experimentally analyze ten explanation metrics spanning five categories (faithfulness, robustness, localization, complexity, randomization), applied to five established feature attribution methods (Occlusion, LIME, GradCAM, LRP, and DeepLIFT) across three RS datasets. Our methodological analysis identifies key limitations in both explanation methods and metrics. The performance of perturbation-based methods, such as Occlusion and LIME, heavily depends on perturbation baselines and spatial characteristics of RS scenes. Gradient-based approaches like GradCAM struggle when multiple labels are present in the same image, while some relevance propagation methods (LRP) can distribute relevance disproportionately relative to the spatial extent of classes. Analogously, we find limitations in evaluation metrics. Faithfulness metrics share the same problems as perturbation-based methods. Localization metrics and complexity metrics are unreliable for classes with a large spatial extent. In contrast, robustness metrics and randomization metrics consistently exhibit greater stability. Our experimental results support these methodological findings. Based on our analysis, we provide guidelines for selecting explanation methods, metrics, and hyperparameters in the context of RS image scene classification.
Related papers
- Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
We introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds.<n>Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures.<n>We propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training.
arXiv Detail & Related papers (2025-06-26T11:53:59Z) - Pitfalls of topology-aware image segmentation [81.19923502845441]
We identify critical pitfalls in model evaluation that include inadequate connectivity choices, overlooked topological artifacts, and inappropriate use of evaluation metrics.<n>We propose a set of actionable recommendations to establish fair and robust evaluation standards for topology-aware medical image segmentation methods.
arXiv Detail & Related papers (2024-12-19T08:11:42Z) - Annotation Cost-Efficient Active Learning for Deep Metric Learning Driven Remote Sensing Image Retrieval [3.2109665109975696]
ANNEAL aims to create a small but informative training set made up of similar and dissimilar image pairs.
The informativeness of image pairs is evaluated by combining uncertainty and diversity criteria.
This way of annotating images significantly reduces the annotation cost compared to annotating images with land-use land-cover class labels.
arXiv Detail & Related papers (2024-06-14T15:08:04Z) - From Movements to Metrics: Evaluating Explainable AI Methods in
Skeleton-Based Human Activity Recognition [0.16385815610837165]
This paper tackles the lack of testing in the applicability and reliability of XAI evaluation metrics in the skeleton-based HAR domain.
We have tested established XAI metrics namely faithfulness and stability on Class Activation Mapping (CAM) and Gradient-weighted Class Activation Mapping (Grad-CAM)
Our findings indicate that textitfaithfulness may not be a reliable metric in certain contexts, such as with the EfficientGCN model.
arXiv Detail & Related papers (2024-02-20T07:58:04Z) - Deep Metric Learning with Soft Orthogonal Proxies [1.823505080809275]
We propose a novel approach that introduces Soft Orthogonality (SO) constraint on proxies.
Our approach leverages Data-Efficient Image Transformer (DeiT) as an encoder to extract contextual features from images along with a DML objective.
Our evaluations demonstrate the superiority of our proposed approach over state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2023-06-22T17:22:15Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - A Segmentation Method for fluorescence images without a machine learning
approach [0.0]
This study describes a deterministic computational neuroscience approach for identifying cells and nuclei.
The method is robust, based on formally correct functions, and does not suffer from tuning on specific data sets.
arXiv Detail & Related papers (2022-12-28T16:47:05Z) - Metrics reloaded: Recommendations for image analysis validation [59.60445111432934]
Metrics Reloaded is a comprehensive framework guiding researchers in the problem-aware selection of metrics.
The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint.
Based on the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics.
arXiv Detail & Related papers (2022-06-03T15:56:51Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
We propose an Adaptive Hierarchical Similarity Metric Learning method.
It considers two noise-insensitive information, textiti.e., class-wise divergence and sample-wise consistency.
Our method achieves state-of-the-art performance compared with current deep metric learning approaches.
arXiv Detail & Related papers (2021-10-29T02:12:18Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Discriminative Residual Analysis for Image Set Classification with
Posture and Age Variations [27.751472312581228]
Discriminant Residual Analysis (DRA) is proposed to improve the classification performance.
DRA attempts to obtain a powerful projection which casts the residual representations into a discriminant subspace.
Two regularization approaches are used to deal with the probable small sample size problem.
arXiv Detail & Related papers (2020-08-23T08:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.