A simpler probe of the quantum Mpemba effect in closed systems
- URL: http://arxiv.org/abs/2507.05946v1
- Date: Tue, 08 Jul 2025 12:42:05 GMT
- Title: A simpler probe of the quantum Mpemba effect in closed systems
- Authors: Filiberto Ares, Colin Rylands, Pasquale Calabrese,
- Abstract summary: We study the local relaxation of closed quantum systems through the relative entropy between the reduced density matrix and its long time limit.<n>We show, using analytic arguments combined with numerical checks, that this relative entropy can be very well approximated by an entropy difference.<n>We show that, in models obeying the entanglement membrane picture, the quantum Mpemba effect cannot occur for a large class of initial states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the local relaxation of closed quantum systems through the relative entropy between the reduced density matrix and its long time limit. We show, using analytic arguments combined with numerical checks, that this relative entropy can be very well approximated by an entropy difference, affording a significant computational advantage. We go on to relate this to the entanglement asymmetry of the subsystem with respect to time translation invariance. In doing this, we obtain a simple probe of the relaxation dynamics of closed many-body systems and use it to re-examine the quantum Mpemba effect, wherein states can relax faster if they are initially further from equilibrium. We reproduce earlier instances of the effect related to symmetry restoration as well as uncover new cases in the absence of such symmetries. For integrable models, we obtain the criteria for this to occur using the quasiparticle picture. Lastly, we show that, in models obeying the entanglement membrane picture, the quantum Mpemba effect cannot occur for a large class of initial states.
Related papers
- Kubo-Martin-Schwinger relation for energy eigenstates of SU(2)-symmetric quantum many-body systems [41.94295877935867]
We show that non-Abelian symmetries may alter conventional thermodynamics.<n>This work helps extend into nonequilibrium physics the effort to identify how non-Abelian symmetries may alter conventional thermodynamics.
arXiv Detail & Related papers (2025-07-09T19:46:47Z) - Probing quantum many-body dynamics using subsystem Loschmidt echos [39.34101719951107]
We experimentally investigate the subsystem Loschmidt echo, a quasi-local observable that captures key features of the Loschmidt echo.<n>In the short-time regime, we observe a dynamical quantum phase transition arising from genuine higher-order correlations.<n>In the long-time regime, the subsystem Loschmidt echo allows us to quantitatively determine the effective dimension and structure of the accessible Hilbert space in the thermodynamic limit.
arXiv Detail & Related papers (2025-01-28T14:51:37Z) - Experimental observation of parity-symmetry-protected phenomena in the quantum Rabi model with a trapped ion [13.368172641201571]
We experimentally simulate a highly controllable extended quantum Rabi model tuning into the ultra-strong or deep coupling regime.<n>We find sensitive responses for the two-level system entropy and phonon Wigner function in the deep coupling regime.<n>This work offers the prospect of exploring symmetry-controlled quantum phenomena and their applications in high-precision quantum technologies.
arXiv Detail & Related papers (2025-01-10T12:23:43Z) - Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully adjustable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.<n>We show a quantum simulator system that consists of a continuously driven Kerr parametric oscillator with a third order non-linearity that can be operated in the quantum regime to create a fully asymmetric double-well.<n>Our work is a first step for the development of analog molecule simulators of proton transfer reactions based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Quantum Mpemba Effect in Random Circuits [0.0]
We study the quantum Mpemba effect in charge-preserving random circuits on qudits.<n>We show that the more asymmetric certain classes of initial states are, the faster they restore symmetry and reach the grand-canonical ensemble.<n>Our results represent a significant advancement in clarifying the emergence of Mpemba physics in chaotic systems.
arXiv Detail & Related papers (2024-05-23T12:51:54Z) - Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect [0.0]
We show how, by tuning the initial state, the symmetry dynamics in free fermionic systems can display much richer behaviour than seen previously.
In particular, for certain classes of initial states, including ground states of free fermionic models with long-range couplings, the entanglement asymmetry can exhibit multiple crossings.
arXiv Detail & Related papers (2024-05-07T15:57:45Z) - Entanglement asymmetry and quantum Mpemba effect in two-dimensional free-fermion systems [0.0]
The quantum Mpemba effect is the counter-intuitive non-equilibrium phenomenon wherein the dynamic restoration of a broken symmetry occurs more rapidly when the initial state exhibits a higher degree of symmetry breaking.
Here we focus on a two-dimensional free-fermion lattice employing the entanglement asymmetry as a measure of symmetry breaking.
We find that the quantum Mpemba effect is strongly affected by the size of the system in the transverse dimension, with the potential to either enhance or spoil the phenomenon depending on the initial states.
arXiv Detail & Related papers (2024-03-07T13:38:40Z) - Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems [0.0]
We conjecture a quasiparticle picture for the charged moments of the reduced density matrix, which are the main ingredients to construct the asymmetry.
By using the Lindblad master equation, we study the effect of gain and loss dissipation on the entanglement asymmetry.
arXiv Detail & Related papers (2024-02-05T11:37:47Z) - Microscopic origin of the quantum Mpemba effect in integrable systems [0.0]
Mpemba effect states that non-equilibrium states may relax faster when they are further from equilibrium.
We study a quantum version of the Mpemba effect that takes place in closed body systems with a U(1) conserved charge.
arXiv Detail & Related papers (2023-10-06T17:59:17Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.