Unconditional Diffusion for Generative Sequential Recommendation
- URL: http://arxiv.org/abs/2507.06121v1
- Date: Tue, 08 Jul 2025 16:05:18 GMT
- Title: Unconditional Diffusion for Generative Sequential Recommendation
- Authors: Yimeng Bai, Yang Zhang, Sihao Ding, Shaohui Ruan, Han Yao, Danhui Guan, Fuli Feng, Tat-Seng Chua,
- Abstract summary: We introduce Brownian Bridge Diffusion Recommendation (BBDRec)<n>BBDRec enforces a structured noise addition and denoising mechanism, ensuring that the trajectories are constrained towards a specific endpoint -- user history, rather than noise.
- Score: 60.66931625619843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models, known for their generative ability to simulate data creation through noise-adding and denoising processes, have emerged as a promising approach for building generative recommenders. To incorporate user history for personalization, existing methods typically adopt a conditional diffusion framework, where the reverse denoising process of reconstructing items from noise is modified to be conditioned on the user history. However, this design may fail to fully utilize historical information, as it gets distracted by the need to model the "item $\leftrightarrow$ noise" translation. This motivates us to reformulate the diffusion process for sequential recommendation in an unconditional manner, treating user history (instead of noise) as the endpoint of the forward diffusion process (i.e., the starting point of the reverse process), rather than as a conditional input. This formulation allows for exclusive focus on modeling the "item $\leftrightarrow$ history" translation. To this end, we introduce Brownian Bridge Diffusion Recommendation (BBDRec). By leveraging a Brownian bridge process, BBDRec enforces a structured noise addition and denoising mechanism, ensuring that the trajectories are constrained towards a specific endpoint -- user history, rather than noise. Extensive experiments demonstrate BBDRec's effectiveness in enhancing sequential recommendation performance. The source code is available at https://github.com/baiyimeng/BBDRec.
Related papers
- Flow Matching based Sequential Recommender Model [54.815225661065924]
This study introduces FMRec, a Flow Matching based model that employs a straight flow trajectory and a modified loss tailored for the recommendation task.<n>FMRec achieves an average improvement of 6.53% over state-of-the-art methods.
arXiv Detail & Related papers (2025-05-22T06:53:03Z) - Distributional Diffusion Models with Scoring Rules [83.38210785728994]
Diffusion models generate high-quality synthetic data.<n> generating high-quality outputs requires many discretization steps.<n>We propose to accomplish sample generation by learning the posterior em distribution of clean data samples.
arXiv Detail & Related papers (2025-02-04T16:59:03Z) - Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions [1.9116784879310031]
We introduce a new class of generative diffusion models that achieve a time-homogeneous structure for both the noising and denoising processes.<n>A key feature of the model is its adaptability to the target data, enabling a variety of downstream tasks using a pre-trained unconditional generative model.
arXiv Detail & Related papers (2025-01-31T18:23:27Z) - Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models [49.458914600467324]
We introduce the Schr"odinger Bridge into diffusion-based sequential recommendation models, creating the SdifRec model.
We also propose an extended version of SdifRec called con-SdifRec, which utilizes user clustering information as a guiding condition.
arXiv Detail & Related papers (2024-08-30T09:10:38Z) - DiffTAD: Temporal Action Detection with Proposal Denoising Diffusion [137.8749239614528]
We propose a new formulation of temporal action detection (TAD) with denoising diffusion, DiffTAD.
Taking as input random temporal proposals, it can yield action proposals accurately given an untrimmed long video.
arXiv Detail & Related papers (2023-03-27T00:40:52Z) - Speech Enhancement and Dereverberation with Diffusion-based Generative
Models [14.734454356396157]
We present a detailed overview of the diffusion process that is based on a differential equation.
We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates.
In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models.
arXiv Detail & Related papers (2022-08-11T13:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.