Topological Holography for Mixed-State Phases and Phase Transitions
- URL: http://arxiv.org/abs/2507.06218v1
- Date: Tue, 08 Jul 2025 17:51:00 GMT
- Title: Topological Holography for Mixed-State Phases and Phase Transitions
- Authors: Ran Luo, Yi-Nan Wang, Zhen Bi,
- Abstract summary: We extend the symmetry topological field theory (SymTFT) framework to open quantum systems.<n>We study (1+1)-dimensional mixed-state phases through condensable algebras in the SymTFT.<n>We show how gauging within the open SymTFT framework reveals connections among different mixed-state phases.
- Score: 5.6658173165064785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend the symmetry topological field theory (SymTFT) framework to open quantum systems. Using canonical purification, we embed mixed states into a doubled (2+1)-dimensional topological order and employ the slab construction to study (1+1)-dimensional mixed-state phases through condensable algebras in the doubled SymTFT. Hermiticity and positivity of the density matrix impose additional constraints on allowable anyon condensations, enabling a systematic classification of mixed-state phases - including strong-to-weak symmetry breaking (SWSSB) and average symmetry-protected topological (ASPT) phases. We present examples of mixed-state phase transitions involving SWSSB and show how gauging within the open SymTFT framework reveals connections among different mixed-state phases.
Related papers
- Topological crystals and soliton lattices in a Gross-Neveu model with Hilbert-space fragmentation [41.94295877935867]
We explore the finite-density phase diagram of the single-flavour Gross-Neveu-Wilson (GNW) model.<n>We find a sequence of inhomogeneous ground states that arise through a real-space version of the mechanism of Hilbert-space fragmentation.
arXiv Detail & Related papers (2025-06-23T14:19:35Z) - Topological Phase Transitions and Mixed State Order in a Hubbard Quantum Simulator [36.556659404501914]
Topological phase transitions challenge conventional paradigms in many-body physics.<n>We observe such a transition between one-dimensional crystalline symmetry-protected topological phases.<n>Our results demonstrate how topology and information influence quantum phase transitions.
arXiv Detail & Related papers (2025-05-22T17:58:35Z) - Bandstructure of a coupled BEC-cavity system: effects of dissipation and geometry [36.136619420474766]
We present a theoretical model for a Bose-Einstein condensate coupled to an optical cavity.<n>We focus on the interplay between different coherent couplings, which can trigger a structural phase transition.<n>We find non-Hermitian phenomena such as the coalescence of crossing precursor modes.
arXiv Detail & Related papers (2025-04-24T16:43:45Z) - Superradiant phase transitions in the quantum Rabi model: Overcoming the no-go theorem through anisotropy [30.342686040430962]
Superradiant phase transition (SRPT) is prohibited in the paradigmatic quantum Rabi model.<n>We show two distinct types of SRPTs emerging from the normal phase in the anisotropic quantum Rabi model.
arXiv Detail & Related papers (2024-12-11T11:33:29Z) - Gauge theory and mixed state criticality [0.0]
In mixed quantum states, the notion of symmetry is divided into two types: strong and weak symmetry.
We present a way to construct various SSB phases for strong symmetries, starting from the ground state phase diagram of lattice gauge theory models.
arXiv Detail & Related papers (2024-11-07T01:40:56Z) - Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.<n>This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Tensor network formulation of symmetry protected topological phases in mixed states [0.36868085124383626]
We define and classify symmetry-protected topological (SPT) phases in mixed states based on the tensor network formulation of the density matrix.
We map strong injective matrix product density operators to a pure state in the doubled Hilbert space.
We extend our results to two-dimensional mixed states described by strong semi-injective tensor network density operators.
arXiv Detail & Related papers (2024-03-25T18:04:29Z) - Symmetry Protected Topological Phases of Mixed States in the Doubled Space [0.0]
We study the interplay of symmetry and topology in quantum many-body mixed states.
In a phenomenon not seen in pure states, mixed states can exhibit average symmetries.
We study the patterns of spontaneous symmetry breaking ( SSB) of mixed states.
arXiv Detail & Related papers (2024-03-20T03:40:28Z) - Quantum phase transition between symmetry enriched topological phases in
tensor-network states [6.014569675344553]
Quantum phase transitions between different topologically ordered phases exhibit rich structures and are generically challenging to study in microscopic lattice models.
We propose a tensor-network solvable model that allows us to tune between different symmetry enriched topological (SET) phases.
arXiv Detail & Related papers (2023-05-03T21:21:36Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.