Gauge theory and mixed state criticality
- URL: http://arxiv.org/abs/2411.04360v1
- Date: Thu, 07 Nov 2024 01:40:56 GMT
- Title: Gauge theory and mixed state criticality
- Authors: Takamasa Ando, Shinsei Ryu, Masataka Watanabe,
- Abstract summary: In mixed quantum states, the notion of symmetry is divided into two types: strong and weak symmetry.
We present a way to construct various SSB phases for strong symmetries, starting from the ground state phase diagram of lattice gauge theory models.
- Score: 0.0
- License:
- Abstract: In mixed quantum states, the notion of symmetry is divided into two types: strong and weak symmetry. While spontaneous symmetry breaking (SSB) for a weak symmetry is detected by two-point correlation functions, SSB for a strong symmetry is characterized by the Renyi-2 correlators. In this work, we present a way to construct various SSB phases for strong symmetries, starting from the ground state phase diagram of lattice gauge theory models. In addition to introducing a new type of mixed-state topological phases, we provide models of the criticalities between them, including those with gapless symmetry-protected topological order. We clarify that the ground states of lattice gauge theories are purified states of the corresponding mixed SSB states. Our construction can be applied to any finite gauge theory and offers a framework to study quantum operations between mixed quantum phases.
Related papers
- Long-range entanglement from spontaneous non-onsite symmetry breaking [3.3754780158324564]
We show a frustration-free lattice model exhibiting SSB of a non-onsite symmetry.
We analytically prove the two-fold ground-state degeneracy and the existence of a finite energy gap.
Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the framework of topological holography.
arXiv Detail & Related papers (2024-11-07T18:59:51Z) - Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Diagnosing Strong-to-Weak Symmetry Breaking via Wightman Correlators [20.572965801171225]
Recent developments have extended the discussion of symmetry and its breaking to mixed states.
We propose the Wightman correlator as an alternative diagnostic tool.
arXiv Detail & Related papers (2024-10-12T02:04:40Z) - Spontaneous symmetry breaking in open quantum systems: strong, weak, and strong-to-weak [4.41737598556146]
We show that strong symmetry always spontaneously breaks into the corresponding weak symmetry.
We conjecture that this relation among strong-to-weak symmetry breaking, gapless modes, and symmetry-charge diffusion is general for continuous symmetries.
arXiv Detail & Related papers (2024-06-27T17:55:36Z) - Symmetry Protected Topological Phases of Mixed States in the Doubled Space [0.0]
We study the interplay of symmetry and topology in quantum many-body mixed states.
In a phenomenon not seen in pure states, mixed states can exhibit average symmetries.
We study the patterns of spontaneous symmetry breaking ( SSB) of mixed states.
arXiv Detail & Related papers (2024-03-20T03:40:28Z) - Unraveling the emergence of quantum state designs in systems with symmetry [15.699822139827916]
We study the emergence of state designs from the random generator states exhibiting symmetries.
We find faster convergence of the trace distance during the early time evolution in comparison to the cases when the symmetry is broken.
We expect our findings to pave the way for further exploration of deep thermalization and equilibration of closed and open quantum many-body systems.
arXiv Detail & Related papers (2024-02-14T05:35:03Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Duality viewpoint of criticality [10.697358928025304]
We study quantum many-body systems which are self-dual under duality transformation connecting different symmetry protected topological phases.
We provide a geometric explanation of the criticality of these self-dual models.
We illustrate our results with several examples in one and two dimensions, which separate two different SPTs.
arXiv Detail & Related papers (2022-09-27T15:13:27Z) - Electric-magnetic duality and $\mathbb{Z}_2$ symmetry enriched Abelian lattice gauge theory [2.206623168926072]
Kitaev's quantum double model is a lattice gauge theoretic realization of Dijkgraaf-Witten topological quantum field theory (TQFT)
Topologically protected ground state space has broad applications for topological quantum computation and topological quantum memory.
arXiv Detail & Related papers (2022-01-28T14:13:38Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - SYK meets non-Hermiticity II: measurement-induced phase transition [16.533265279392772]
We analytically derive the effective action in the large-$N$ limit and show that an entanglement transition is caused by the symmetry breaking in the enlarged replica space.
We also verify the large-$N$ critical exponents by numerically solving the Schwinger-Dyson equation.
arXiv Detail & Related papers (2021-04-16T17:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.