論文の概要: Is Diversity All You Need for Scalable Robotic Manipulation?
- arxiv url: http://arxiv.org/abs/2507.06219v1
- Date: Tue, 08 Jul 2025 17:52:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:38.433025
- Title: Is Diversity All You Need for Scalable Robotic Manipulation?
- Title(参考訳): スケーラブルなロボットマニピュレーションに必要な多様性は?
- Authors: Modi Shi, Li Chen, Jin Chen, Yuxiang Lu, Chiming Liu, Guanghui Ren, Ping Luo, Di Huang, Maoqing Yao, Hongyang Li,
- Abstract要約: ロボット学習におけるデータ多様性の役割について,従来の「より多様な方がよい」という直観に固執する3つの重要な次元(タスク),実施形態(ロボットの使用方法),専門家(専門家)を用いて検討する。
タスクの多様性は、タスクごとのデモンストレーション量よりも重要であり、多様な事前学習タスクから新しい下流シナリオへの移行に有効であることを示す。
本稿では,速度のあいまいさを緩和する分散デバイアス法を提案する。GO-1-Proは,2.5倍の事前学習データを用いて,15%の性能向上を実現している。
- 参考スコア(独自算出の注目度): 50.747150672933316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data scaling has driven remarkable success in foundation models for Natural Language Processing (NLP) and Computer Vision (CV), yet the principles of effective data scaling in robotic manipulation remain insufficiently understood. In this work, we investigate the nuanced role of data diversity in robot learning by examining three critical dimensions-task (what to do), embodiment (which robot to use), and expert (who demonstrates)-challenging the conventional intuition of "more diverse is better". Throughout extensive experiments on various robot platforms, we reveal that (1) task diversity proves more critical than per-task demonstration quantity, benefiting transfer from diverse pre-training tasks to novel downstream scenarios; (2) multi-embodiment pre-training data is optional for cross-embodiment transfer-models trained on high-quality single-embodiment data can efficiently transfer to different platforms, showing more desirable scaling property during fine-tuning than multi-embodiment pre-trained models; and (3) expert diversity, arising from individual operational preferences and stochastic variations in human demonstrations, can be confounding to policy learning, with velocity multimodality emerging as a key contributing factor. Based on this insight, we propose a distribution debiasing method to mitigate velocity ambiguity, the yielding GO-1-Pro achieves substantial performance gains of 15%, equivalent to using 2.5 times pre-training data. Collectively, these findings provide new perspectives and offer practical guidance on how to scale robotic manipulation datasets effectively.
- Abstract(参考訳): データスケーリングは自然言語処理(NLP)とコンピュータビジョン(CV)の基礎モデルにおいて顕著な成功を収めたが、ロボット操作における効果的なデータスケーリングの原理はいまだに十分に理解されていない。
本研究では,ロボット学習におけるデータ多様性の役割について,従来の「より多様なもの」の直観に適応する3つの重要な次元(タスク),実施形態(ロボットの使用方法),専門家(専門家)を用いて検討する。
多様なロボットプラットフォーム上での広範な実験を通して,(1)タスクの多様性はタスクごとのデモンストレーション量よりも重要であり,(2)多様な事前学習タスクから新たな下流シナリオへの移行の恩恵を受けること,(2)高品質な単体データに基づいて訓練された多身体間移動モデルが,複数のプラットフォームへ効率よく移行可能であること,(3)個別の操作的嗜好から生じる専門的多様性,および人体における確率的変動から生じる専門的多様性は,政策学習に寄与しうること,などを明らかにした。
そこで本研究では,速度のあいまいさを緩和する分散デバイアス法を提案する。GO-1-Proは,2.5倍の事前学習データを用いて,15%の性能向上を実現している。
これらの発見は、新しい視点を提供し、ロボット操作データセットを効果的にスケールする方法に関する実践的なガイダンスを提供する。
関連論文リスト
- Sample Efficient Robot Learning in Supervised Effect Prediction Tasks [0.0]
MUSEL(Model Uncertainty for Sample-Efficient Learning)は、ロボット工学における回帰タスクに適した新しいALフレームワークである。
MUSELは学習精度とサンプル効率を両立させ,情報的サンプルを選択する学習行動効果の有効性を検証した。
論文 参考訳(メタデータ) (2024-12-03T09:48:28Z) - Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
さまざまな種類のロボットにまたがって単一のポリシーを訓練することによって、ロボット学習はより広範囲で多様なデータセットを活用することができる。
そこで我々はCrossFormerを提案する。CrossFormerはスケーラブルでフレキシブルなトランスフォーマーベースのポリシーで、どんな実施形態からでもデータを消費できる。
我々は、同じネットワークウェイトがシングルアームとデュアルアームの操作システム、車輪付きロボット、クワッドコプター、四足歩行など、非常に異なるロボットを制御できることを実証した。
論文 参考訳(メタデータ) (2024-08-21T17:57:51Z) - Mitigating the Human-Robot Domain Discrepancy in Visual Pre-training for Robotic Manipulation [16.809190349155525]
そこで本研究では,容易に利用可能な人間ロボットのビデオデータを利用して,ドメインギャップを埋める新しい適応パラダイムを提案する。
提案手法では,人間とロボットのビデオのセマンティクスを整列させるために,人間ロボットのアライメント損失を用いて,事前学習したモデルをパラメータ効率よくロボット領域に適応させる。
論文 参考訳(メタデータ) (2024-06-20T11:57:46Z) - Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
ロボットアームのエンドタスクに対するモデルベース強化学習(RL)アプローチを提案する。
我々はベイズニューラルネットワークモデルを用いて、探索中に動的モデルに符号化された信念と情報の両方を確率論的に表現する。
実験により,ベイズモデルに基づくRL手法の利点が示された。
論文 参考訳(メタデータ) (2024-04-02T11:44:37Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
ロボット操作のための6つのオフライン学習アルゴリズムについて広範な研究を行う。
我々の研究は、オフラインの人間のデータから学習する際の最も重要な課題を分析します。
人間のデータセットから学ぶ機会を強調します。
論文 参考訳(メタデータ) (2021-08-06T20:48:30Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。