Extracting filtered signal statistics of continuously measured quantum systems
- URL: http://arxiv.org/abs/2507.06303v1
- Date: Tue, 08 Jul 2025 18:00:07 GMT
- Title: Extracting filtered signal statistics of continuously measured quantum systems
- Authors: Anthony Kiely, Gabriel T. Landi,
- Abstract summary: We present a numerically efficient approach to compute the steady state of the system and detector in the absence of feedback.<n>Building on this, we demonstrate how perturbative corrections allow one to efficiently determine the steady state solution for weak feedback driving.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The joint state of a continuously monitored quantum system and the classical filtered measurement record has recently been shown to be described by a quantum Fokker-Planck master equation. We present a numerically efficient approach to compute the steady state of the system and detector in the absence of feedback. We use this to extract detailed statistics of the filtered signal, including all moments, the full probability distribution, the mutual information, correlation functions, as well as the Fisher information for parameter estimation. Building on this, we demonstrate how perturbative corrections allow one to efficiently determine the steady state solution for weak feedback driving.
Related papers
- Calibration of Quantum Devices via Robust Statistical Methods [45.464983015777314]
We numerically analyze advanced statistical methods for Bayesian inference against the state-of-the-art in quantum parameter learning.<n>We show advantages of these approaches over existing ones, namely under multi-modality and high dimensionality.<n>Our findings have applications in challenging quantumcharacterization tasks namely learning the dynamics of open quantum systems.
arXiv Detail & Related papers (2025-07-09T15:22:17Z) - Quantum sensing of displacements with stabilized GKP states [41.94295877935867]
We show how protocols for the stabilization of Gottesman-Kitaev-Preskill states can be used for the estimation of two-quadrature displacement sensing.<n>Thanks to the stabilization, this sensor is backaction evading and can function continuously without reset, making it well suited for the detection of itinerant signals.
arXiv Detail & Related papers (2025-06-25T17:18:50Z) - State Estimation and Control for Stochastic Quantum Dynamics with Homodyne Measurement: Stabilizing Qubits under Uncertainty [1.4811951486536687]
This paper introduces a Lyapunov-based control approach with homodyne measurement.
We study two filtering approaches: (i) the traditional quantum filtering and (ii) a modified version of the extended Kalman filtering.
arXiv Detail & Related papers (2024-03-09T22:29:00Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Parameter estimation for quantum jump unraveling [0.0]
We consider the estimation of parameters encoded in the measurement record of a continuously monitored quantum system in the jump.
Here, it is generally difficult to assess the precision of the estimation procedure via the Fisher Information due to intricate temporal correlations and memory effects.
arXiv Detail & Related papers (2024-02-09T17:14:38Z) - Improving Continuous-variable Quantum Channels with Unitary Averaging [37.69303106863453]
We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel.
The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via a probabilistic error correcting protocol.
arXiv Detail & Related papers (2023-11-17T10:10:19Z) - A Score-Based Model for Learning Neural Wavefunctions [41.82403146569561]
We provide a new framework for obtaining properties of quantum many-body ground states using score-based neural networks.
Our new framework does not require explicit probability distribution and performs the sampling via Langevin dynamics.
arXiv Detail & Related papers (2023-05-25T23:44:27Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Correlation functions for realistic continuous quantum measurement [0.0]
We propose a self-contained and accessible derivation of an exact formula for the $n$-point correlation functions of the signal measured when continuously observing a quantum system.
arXiv Detail & Related papers (2022-11-30T23:45:22Z) - Compensating for non-linear distortions in controlled quantum systems [0.0]
Distortion of the input fields in an experimental platform alters the model accuracy and disturbs the predicted dynamics.
We present an effective method for estimating these distortions which is suitable for non-linear transfer functions of arbitrary lengths and magnitudes.
We have successfully tested our approach for a numerical example of a single Rydberg atom system.
arXiv Detail & Related papers (2022-10-14T14:02:39Z) - TLIO: Tight Learned Inertial Odometry [43.17991168599939]
We propose a tightly-coupled Extended Kalman Filter framework for IMU-only state estimation.
We show that our network, trained with pedestrian data from a headset, can produce statistically consistent measurement and uncertainty.
arXiv Detail & Related papers (2020-07-06T03:13:34Z) - An inverse-system method for identification of damping rate functions in
non-Markovian quantum systems [2.7068170693404197]
We present an inverse-system method to identify damping rate functions which describe non-Markovian environments.
We show that identifiability for the damping rate functions corresponds to the invertibility of the system.
The effectiveness of our method is shown in examples of an atom and three-spin-chain non-Markovian systems.
arXiv Detail & Related papers (2020-03-19T07:53:10Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.