論文の概要: Deprecating Benchmarks: Criteria and Framework
- arxiv url: http://arxiv.org/abs/2507.06434v1
- Date: Tue, 08 Jul 2025 22:29:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.410515
- Title: Deprecating Benchmarks: Criteria and Framework
- Title(参考訳): ベンチマークの廃止 - 基準とフレームワーク
- Authors: Ayrton San Joaquin, Rokas Gipiškis, Leon Staufer, Ariel Gil,
- Abstract要約: ベンチマークを完全にあるいは部分的に非推奨にする時期を決定するための基準と、ベンチマークを非推奨にするフレームワークを提案する。
我々の研究は、特にフロンティアモデルにおいて、厳格で高品質な評価に向けたベンチマークの状況を改善することを目的としている。
- 参考スコア(独自算出の注目度): 2.6449913368815516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As frontier artificial intelligence (AI) models rapidly advance, benchmarks are integral to comparing different models and measuring their progress in different task-specific domains. However, there is a lack of guidance on when and how benchmarks should be deprecated once they cease to effectively perform their purpose. This risks benchmark scores over-valuing model capabilities, or worse, obscuring capabilities and safety-washing. Based on a review of benchmarking practices, we propose criteria to decide when to fully or partially deprecate benchmarks, and a framework for deprecating benchmarks. Our work aims to advance the state of benchmarking towards rigorous and quality evaluations, especially for frontier models, and our recommendations are aimed to benefit benchmark developers, benchmark users, AI governance actors (across governments, academia, and industry panels), and policy makers.
- Abstract(参考訳): フロンティア人工知能(AI)モデルが急速に進歩するにつれて、ベンチマークは異なるモデルを比較し、異なるタスク固有の領域でその進捗を測定するのに不可欠である。
しかし、その目的を効果的に実行しなくなると、いつ、どのようにベンチマークを非推奨にするべきかについてのガイダンスがない。
このベンチマークは、過度に評価されるモデル機能、または、さらに悪いことに、難読化機能と安全洗浄をスコア付けする。
ベンチマークプラクティスのレビューに基づいて、ベンチマークを完全にあるいは部分的に非推奨にする時期を決定するための基準と、ベンチマークを非推奨にするフレームワークを提案する。
我々の研究は、厳格で高品質な評価、特にフロンティアモデルに向けたベンチマークの状況を改善することを目的としており、私たちの推奨事項は、ベンチマーク開発者、ベンチマークユーザ、AIガバナンスアクター(政府全体、学術、産業パネル)、政策立案者への利益を目的としています。
関連論文リスト
- Establishing Best Practices for Building Rigorous Agentic Benchmarks [94.69724201080155]
多くのエージェントベンチマークがタスク設定や報酬設計に問題があることを示す。
このような問題は、エージェントのパフォーマンスを最大100%相対的に過小評価することにつながる可能性がある。
我々はベンチマーク構築経験から要約したガイドラインの集合であるAgentic Benchmark Checklist (ABC)を紹介した。
論文 参考訳(メタデータ) (2025-07-03T17:35:31Z) - MEQA: A Meta-Evaluation Framework for Question & Answer LLM Benchmarks [0.0]
質問と回答(QA)ベンチマークのメタ評価のためのフレームワークであるMEQAを提案する。
我々は,人間とLLM評価器を用いたサイバーセキュリティベンチマークにおいて,この手法を実証する。
私たちは、強力な防御ツールとセキュリティ脅威として、AIモデルの二重性によるテストドメインの選択を動機付けています。
論文 参考訳(メタデータ) (2025-04-18T19:01:53Z) - More than Marketing? On the Information Value of AI Benchmarks for Practitioners [42.73526862595375]
学術分野では、公開ベンチマークは一般的に研究の進展を捉えるのに適した指標と見なされた。
製品や政策において、ベンチマークは実質的な決定を下すのに不十分であることがしばしば見出された。
有効なベンチマークは、意味のある実世界の評価を提供し、ドメインの専門知識を取り入れ、スコープと目標の透明性を維持するべきであると結論付けています。
論文 参考訳(メタデータ) (2024-12-07T03:35:39Z) - BetterBench: Assessing AI Benchmarks, Uncovering Issues, and Establishing Best Practices [28.70453947993952]
我々は、AIベンチマークのライフサイクル全体で46のベストプラクティスを検討し、それに対して24のAIベンチマークを評価するアセスメントフレームワークを開発した。
私たちは、大きな品質差があり、よく使われるベンチマークが重大な問題に悩まされていることに気付きました。
論文 参考訳(メタデータ) (2024-11-20T02:38:24Z) - Do These LLM Benchmarks Agree? Fixing Benchmark Evaluation with BenchBench [15.565644819269803]
過度に見落とされた方法論的選択がベンチマークコンセンサステスト(BAT)の結果にどのように影響するかを示す。
我々は、BAT用のピソンパッケージであるBenchBenchを紹介し、ベンチマークを仲間を使って評価するためのメタベンチマークであるBenchBench- Leaderboardをリリースする。
論文 参考訳(メタデータ) (2024-07-18T17:00:23Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - A Review of Benchmarks for Visual Defect Detection in the Manufacturing
Industry [63.52264764099532]
本稿では,既存のベンチマークを用いて,それらの特性とユースケースを比較し,公開する。
産業メトリクスの要求と試験手順についての研究は、研究されたベンチマークに提示され、適用されます。
論文 参考訳(メタデータ) (2023-05-05T07:44:23Z) - AIBench: An Agile Domain-specific Benchmarking Methodology and an AI
Benchmark Suite [26.820244556465333]
本稿では,アジャイルなドメイン固有のベンチマーク手法を提案する。
我々は10つの重要なエンドツーエンドアプリケーションシナリオを特定し、そのうち16の代表的なAIタスクをAIコンポーネントベンチマークとして抽出する。
最初のエンドツーエンドのインターネットサービスAIベンチマークを提示する。
論文 参考訳(メタデータ) (2020-02-17T07:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。