Concept-TRAK: Understanding how diffusion models learn concepts through concept-level attribution
- URL: http://arxiv.org/abs/2507.06547v2
- Date: Fri, 25 Jul 2025 06:06:12 GMT
- Title: Concept-TRAK: Understanding how diffusion models learn concepts through concept-level attribution
- Authors: Yonghyun Park, Chieh-Hsin Lai, Satoshi Hayakawa, Yuhta Takida, Naoki Murata, Wei-Hsiang Liao, Woosung Choi, Kin Wai Cheuk, Junghyun Koo, Yuki Mitsufuji,
- Abstract summary: We introduce emphconcept-level attribution via a novel method called emphConcept-TRAK.<n> Concept-TRAK extends influence functions with two key innovations: (1) a reformulated diffusion training loss based on diffusion posterior sampling, enabling robust, sample-specific attribution; and (2) a concept-aware reward function that emphasizes semantic relevance.
- Score: 20.93589028730206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While diffusion models excel at image generation, their growing adoption raises critical concerns around copyright issues and model transparency. Existing attribution methods identify training examples influencing an entire image, but fall short in isolating contributions to specific elements, such as styles or objects, that matter most to stakeholders. To bridge this gap, we introduce \emph{concept-level attribution} via a novel method called \emph{Concept-TRAK}. Concept-TRAK extends influence functions with two key innovations: (1) a reformulated diffusion training loss based on diffusion posterior sampling, enabling robust, sample-specific attribution; and (2) a concept-aware reward function that emphasizes semantic relevance. We evaluate Concept-TRAK on the AbC benchmark, showing substantial improvements over prior methods. Through diverse case studies--ranging from identifying IP-protected and unsafe content to analyzing prompt engineering and compositional learning--we demonstrate how concept-level attribution yields actionable insights for responsible generative AI development and governance.
Related papers
- Interpretable Reward Modeling with Active Concept Bottlenecks [54.00085739303773]
We introduce Concept Bottleneck Reward Models (CB-RM), a reward modeling framework that enables interpretable preference learning.<n>Unlike standard RLHF methods that rely on opaque reward functions, CB-RM decomposes reward prediction into human-interpretable concepts.<n>We formalize an active learning strategy that dynamically acquires the most informative concept labels.
arXiv Detail & Related papers (2025-07-07T06:26:04Z) - Interpretable Few-Shot Image Classification via Prototypical Concept-Guided Mixture of LoRA Experts [79.18608192761512]
Self-Explainable Models (SEMs) rely on Prototypical Concept Learning (PCL) to enable their visual recognition processes more interpretable.<n>We propose a Few-Shot Prototypical Concept Classification framework that mitigates two key challenges under low-data regimes: parametric imbalance and representation misalignment.<n>Our approach consistently outperforms existing SEMs by a notable margin, with 4.2%-8.7% relative gains in 5-way 5-shot classification.
arXiv Detail & Related papers (2025-06-05T06:39:43Z) - Fine-Grained Erasure in Text-to-Image Diffusion-based Foundation Models [56.35484513848296]
FADE (Fine grained Attenuation for Diffusion Erasure) is an adjacency-aware unlearning algorithm for text-to-image generative models.<n>It removes target concepts with minimal impact on correlated concepts, achieving a 12% improvement in retention performance over state-of-the-art methods.
arXiv Detail & Related papers (2025-03-25T15:49:48Z) - ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction [20.43411883845885]
We introduce a novel task named Unsupervised Concept Extraction (UCE) that considers an unsupervised setting without any human knowledge of the concepts.
Given an image that contains multiple concepts, the task aims to extract and recreate individual concepts solely relying on the existing knowledge from pretrained diffusion models.
We present ConceptExpress that tackles UCE by unleashing the inherent capabilities of pretrained diffusion models in two aspects.
arXiv Detail & Related papers (2024-07-09T17:50:28Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.698305103879232]
We propose a novel concept domain correction framework named textbfDoCo (textbfDomaintextbfCorrection)<n>By aligning the output domains of sensitive and anchor concepts through adversarial training, our approach ensures comprehensive unlearning of target concepts.<n>We also introduce a concept-preserving gradient surgery technique that mitigates conflicting gradient components, thereby preserving the model's utility while unlearning specific concepts.
arXiv Detail & Related papers (2024-05-24T07:47:36Z) - Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models [58.065255696601604]
We use compositional property of diffusion models, which allows to leverage multiple prompts in a single image generation.
We argue that it is essential to consider all possible approaches to image generation with diffusion models that can be employed by an adversary.
arXiv Detail & Related papers (2024-04-21T16:35:16Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Cross-Modal Conceptualization in Bottleneck Models [21.2577097041883]
Concept Bottleneck Models (CBMs) assume that training examples (e.g., x-ray images) are annotated with high-level concepts.
In our approach, we adopt a more moderate assumption and instead use text descriptions, accompanying the images in training, to guide the induction of concepts.
Our cross-modal approach treats concepts as discrete latent variables and promotes concepts that (1) are predictive of the label, and (2) can be predicted reliably from both the image and text.
arXiv Detail & Related papers (2023-10-23T11:00:19Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images.
We present the Geom-Erasing, a novel concept removal method based on the geometric-driven control.
arXiv Detail & Related papers (2023-10-09T17:13:10Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
Generalized compositional zero-shot learning means to learn composed concepts of attribute-object pairs in a zero-shot fashion.
This paper introduces a new approach, termed translational concept embedding, to solve these two difficulties in a unified framework.
arXiv Detail & Related papers (2021-12-20T21:27:51Z) - Separating Skills and Concepts for Novel Visual Question Answering [66.46070380927372]
Generalization to out-of-distribution data has been a problem for Visual Question Answering (VQA) models.
"Skills" are visual tasks, such as counting or attribute recognition, and are applied to "concepts" mentioned in the question.
We present a novel method for learning to compose skills and concepts that separates these two factors implicitly within a model.
arXiv Detail & Related papers (2021-07-19T18:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.