論文の概要: Capturing Stable HDR Videos Using a Dual-Camera System
- arxiv url: http://arxiv.org/abs/2507.06593v2
- Date: Thu, 21 Aug 2025 15:18:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 14:03:17.198869
- Title: Capturing Stable HDR Videos Using a Dual-Camera System
- Title(参考訳): デュアルカメラシステムによる安定HDR映像の撮影
- Authors: Qianyu Zhang, Bolun Zheng, Lingyu Zhu, Hangjia Pan, Zunjie Zhu, Zongpeng Li, Shiqi Wang,
- Abstract要約: 交互露光(AE)パラダイムを用いた高ダイナミックレンジ(AE)ビデオの取得は、単眼カメラによるコスト効率の面で大きな注目を集めている。
ディープニューラルネットワークによって駆動される進歩にもかかわらず、これらの手法は、フレーム間の不整合のため、現実世界のアプリケーションでは時間的フリックの傾向にある。
露光再構成から時間アンカーを分離する学習型HDRビデオ生成ソリューションを提案する。
- 参考スコア(独自算出の注目度): 19.393435127495668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High Dynamic Range (HDR) video acquisition using the alternating exposure (AE) paradigm has garnered significant attention due to its cost-effectiveness with a single consumer camera. However, despite progress driven by deep neural networks, these methods remain prone to temporal flicker in real-world applications due to inter-frame exposure inconsistencies. To address this challenge while maintaining the cost-effectiveness of the AE paradigm, we propose a novel learning-based HDR video generation solution. Specifically, we propose a dual-stream HDR video generation paradigm that decouples temporal luminance anchoring from exposure-variant detail reconstruction, overcoming the inherent limitations of the AE paradigm. To support this, we design an asynchronous dual-camera system (DCS), which enables independent exposure control across two cameras, eliminating the need for synchronization typically required in traditional multi-camera setups. Furthermore, an exposure-adaptive fusion network (EAFNet) is formulated for the DCS system. EAFNet integrates a pre-alignment subnetwork that aligns features across varying exposures, ensuring robust feature extraction for subsequent fusion, an asymmetric cross-feature fusion subnetwork that emphasizes reference-based attention to effectively merge these features across exposures, and a reconstruction subnetwork to mitigate ghosting artifacts and preserve fine details. Extensive experimental evaluations demonstrate that the proposed method achieves state-of-the-art performance across various datasets, showing the remarkable potential of our solution in HDR video reconstruction. The codes and data captured by DCS will be available at https://zqqqyu.github.io/DCS-HDR/.
- Abstract(参考訳): 高ダイナミックレンジ(HDR)ビデオ取得では,1台のコンシューマーカメラによる費用対効果により,AE(交互露出)パラダイムが注目されている。
しかし、ディープニューラルネットワークによって駆動される進歩にもかかわらず、これらの手法は、フレーム間露光の不整合のため、現実世界のアプリケーションでは時間的フリックの傾向が強い。
AEパラダイムのコスト効率を維持しつつ、この課題に対処するために、新しい学習ベースのHDRビデオ生成ソリューションを提案する。
具体的には、AEパラダイムの固有の制約を克服し、露光変光細部再構成から時間輝度を分離するデュアルストリームHDRビデオ生成パラダイムを提案する。
これをサポートするために,従来のマルチカメラセットアップで通常必要とされる同期を不要にしながら,2台のカメラ間で独立に露光制御が可能な非同期デュアルカメラシステム (DCS) を設計する。
さらに、DCSシステムに対して、露光適応核融合ネットワーク(EAFNet)を定式化する。
EAFNetは、様々な露出にまたがる特徴の整列、その後の融合のための堅牢な特徴抽出を保証するための事前調整サブネットワーク、これらの特徴を効果的にマージするために参照ベースの注意を強調する非対称なクロスフィーチャーフュージョンサブネットワーク、ゴーストアーティファクトを緩和し詳細を保存するための再構築サブネットワークを統合している。
大規模実験により,提案手法は様々なデータセットにまたがって最先端の性能を達成し,HDRビデオ再構成におけるソリューションの可能性を示す。
DCSが取得したコードとデータはhttps://zqqqyu.github.io/DCS-HDR/で入手できる。
関連論文リスト
- Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
我々は,HDRイメージングの課題に関する重要な知見に基づいて,Pixel-Asynchronous HDRイメージングシステムを提案する。
提案システムでは,DVS(Dynamic Vision Sensors)とLCDパネルを統合する。
LCDパネルは、その透過性を変化させてDVSの照射インシデントを変調し、ピクセル非依存のイベントストリームをトリガーする。
論文 参考訳(メタデータ) (2024-03-14T13:45:09Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
照明劣化画像復元(IDIR)技術は、劣化した画像の視認性を改善し、劣化した照明の悪影響を軽減することを目的としている。
これらのアルゴリズムのうち、拡散モデル(DM)に基づく手法は期待できる性能を示しているが、画像レベルの分布を予測する際に、重い計算要求や画素の不一致の問題に悩まされることが多い。
我々は、コンパクトな潜在空間内でDMを活用して、簡潔な指導先を生成することを提案し、IDIRタスクのためのReti-Diffと呼ばれる新しいソリューションを提案する。
Reti-Diff は Retinex-based Latent DM (RLDM) と Retinex-Guided Transformer (RG) の2つの鍵成分からなる。
論文 参考訳(メタデータ) (2023-11-20T09:55:06Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
2つの大きなスタブリングブロックは、画素の不一致や非効率な推論など、開発を妨げる。
本研究では,高機能なマルチ露光画像融合のための自己アライメントとディテールリプレクションモジュールを取り入れたアーキテクチャ検索に基づくパラダイムを提案する。
提案手法は様々な競争方式より優れており、一般的なシナリオではPSNRが3.19%向上し、不整合シナリオでは23.5%向上した。
論文 参考訳(メタデータ) (2023-05-20T17:01:52Z) - A Unified HDR Imaging Method with Pixel and Patch Level [41.14378863436963]
我々はHyNetと呼ばれるハイブリッドHDRデゴーストネットワークを提案し,HDR画像を生成する。
実験により、HyNetは最先端の手法よりも定量的にも質的にも優れており、統一されたテクスチャと色で魅力的なHDR視覚化を実現している。
論文 参考訳(メタデータ) (2023-04-14T06:21:57Z) - Ghost-free High Dynamic Range Imaging via Hybrid CNN-Transformer and
Structure Tensor [12.167049432063132]
本稿では,ゴーストフリーなHDR画像を生成するために,畳み込みエンコーダとトランスフォーマーデコーダを組み合わせたハイブリッドモデルを提案する。
エンコーダでは、マルチスケール機能を最適化するために、コンテキスト集約ネットワークと非ローカルアテンションブロックが採用されている。
Swin Transformer に基づくデコーダを用いて,提案モデルの再構成性能を向上させる。
論文 参考訳(メタデータ) (2022-12-01T15:43:32Z) - H2-Stereo: High-Speed, High-Resolution Stereoscopic Video System [39.95458608416292]
高分解能立体視(H2-Stereo)ビデオは、動的3Dコンテンツを微妙に知覚することができる。
既存の手法は、時間的または空間的な詳細を欠いた妥協された解決策を提供する。
本稿では,高解像度低フレームレート(HSR-LFR)映像を空間的詳細で撮影するデュアルカメラシステムを提案する。
そこで我々は,H2-Stereo ビデオの効率的な再構成にクロスカメラ冗長性を利用する学習情報融合ネットワーク (LIFnet) を考案した。
論文 参考訳(メタデータ) (2022-08-04T04:06:01Z) - SJ-HD^2R: Selective Joint High Dynamic Range and Denoising Imaging for
Dynamic Scenes [17.867412310873732]
Ghosting artifacts, Motion blur, Lowfidelity in highlightは、高ダイナミックレンジ(LDR)イメージングにおける主な課題である。
本稿では,2つのサブネットワークを含むHDRとデノナイズパイプラインを提案する。
私たちは、最初の共同HDRとデノナイジングベンチマークデータセットを作成します。
論文 参考訳(メタデータ) (2022-06-20T07:49:56Z) - MC-Blur: A Comprehensive Benchmark for Image Deblurring [127.6301230023318]
ほとんどの実世界の画像では、ブラーは動きやデフォーカスなど様々な要因によって引き起こされる。
我々は,MC-Blurと呼ばれる大規模マルチライク画像デブロアリングデータセットを新たに構築する。
MC-Blurデータセットに基づいて,異なるシナリオにおけるSOTA法の比較を行う。
論文 参考訳(メタデータ) (2021-12-01T02:10:42Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
本研究では,新しい2段階深層ネットワークを提案することにより,シングルショットLDRからHDRマッピングへの課題に取り組む。
提案手法は,カメラ応答機能(CRF)や露光設定など,ハードウェア情報を知ることなくHDR画像の再構築を図ることを目的とする。
論文 参考訳(メタデータ) (2021-04-19T15:19:17Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
誘導DSRのための新しい注意に基づく階層型マルチモーダル融合ネットワークを提案する。
本手法は,再現精度,動作速度,メモリ効率の点で最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:28:33Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。