FuDoBa: Fusing Document and Knowledge Graph-based Representations with Bayesian Optimisation
- URL: http://arxiv.org/abs/2507.06622v1
- Date: Wed, 09 Jul 2025 07:49:55 GMT
- Title: FuDoBa: Fusing Document and Knowledge Graph-based Representations with Bayesian Optimisation
- Authors: Boshko Koloski, Senja Pollak, Roberto Navigli, Blaž Škrlj,
- Abstract summary: We introduce FuDoBa, a Bayesian optimisation-based method that integrates LLM-based embeddings with domain-specific structured knowledge.<n>This fusion produces low-dimensional, task-relevant representations while reducing training complexity and yielding interpretable early-fusion weights.<n>We demonstrate the effectiveness of our approach on six datasets in two domains, showing that our proposed representation learning approach performs on par with, or surpasses, those produced solely by the proprietary LLM-based embedding baselines.
- Score: 43.56253799373878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building on the success of Large Language Models (LLMs), LLM-based representations have dominated the document representation landscape, achieving great performance on the document embedding benchmarks. However, the high-dimensional, computationally expensive embeddings from LLMs tend to be either too generic or inefficient for domain-specific applications. To address these limitations, we introduce FuDoBa a Bayesian optimisation-based method that integrates LLM-based embeddings with domain-specific structured knowledge, sourced both locally and from external repositories like WikiData. This fusion produces low-dimensional, task-relevant representations while reducing training complexity and yielding interpretable early-fusion weights for enhanced classification performance. We demonstrate the effectiveness of our approach on six datasets in two domains, showing that when paired with robust AutoML-based classifiers, our proposed representation learning approach performs on par with, or surpasses, those produced solely by the proprietary LLM-based embedding baselines.
Related papers
- FlowerTune: A Cross-Domain Benchmark for Federated Fine-Tuning of Large Language Models [43.62847972139202]
Large Language Models (LLMs) have achieved state-of-the-art results across diverse domains, yet their development remains reliant on vast amounts of publicly available data.<n>This work lays the foundation for developing privacy-preserving, domain-specialized LLMs for real-world applications.
arXiv Detail & Related papers (2025-06-03T14:54:12Z) - Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LF is a goal-oriented latent factor discovery system.<n>It integrates instruction-following ability with statistical models to handle noisy datasets.
arXiv Detail & Related papers (2025-02-21T02:03:08Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.<n>LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.<n>Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Making Text Embedders Few-Shot Learners [33.50993377494602]
We introduce a novel model bge-en-icl, which employs few-shot examples to produce high-quality text embeddings.
Our approach integrates task-related examples directly into the query side, resulting in significant improvements across various tasks.
Experimental results on the MTEB and AIR-Bench benchmarks demonstrate that our approach sets new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-09-24T03:30:19Z) - LLM with Relation Classifier for Document-Level Relation Extraction [25.587850398830252]
Large language models (LLMs) have created a new paradigm for natural language processing.<n>This paper investigates the causes of this performance gap, identifying the dispersion of attention by LLMs due to entity pairs without relations as a key factor.
arXiv Detail & Related papers (2024-08-25T16:43:19Z) - AutoML-guided Fusion of Entity and LLM-based Representations for Document Classification [43.56253799373878]
This work demonstrates that injecting embedded information from knowledge bases can augment the performance of contemporary Large Language Model (LLM)-based representations for the task of text classification.
By considering automated machine learning (AutoML) with the fused representation space, we demonstrate it is possible to improve classification accuracy even if we use low-dimensional projections of the original representation space.
arXiv Detail & Related papers (2024-08-19T08:41:40Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.<n>We propose a novel plug-and-play alignment framework for LLMs and collaborative models.<n>Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Bridging LLMs and KGs without Fine-Tuning: Intermediate Probing Meets Subgraph-Aware Entity Descriptions [49.36683223327633]
Large Language Models (LLMs) encapsulate extensive world knowledge and exhibit powerful context modeling capabilities.<n>We propose a novel framework that synergizes the strengths of LLMs with robust knowledge representation to enable effective and efficient KGC.<n>We achieve a 47% relative improvement over previous methods based on non-fine-tuned LLMs and, to our knowledge, are the first to achieve classification performance comparable to fine-tuned LLMs.
arXiv Detail & Related papers (2024-08-13T10:15:55Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.