LLM with Relation Classifier for Document-Level Relation Extraction
- URL: http://arxiv.org/abs/2408.13889v2
- Date: Sat, 07 Dec 2024 09:43:20 GMT
- Title: LLM with Relation Classifier for Document-Level Relation Extraction
- Authors: Xingzuo Li, Kehai Chen, Yunfei Long, Min Zhang,
- Abstract summary: Large language models (LLMs) have created a new paradigm for natural language processing.<n>This paper investigates the causes of this performance gap, identifying the dispersion of attention by LLMs due to entity pairs without relations as a key factor.
- Score: 25.587850398830252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have created a new paradigm for natural language processing. Despite their advancement, LLM-based methods still lag behind traditional approaches in document-level relation extraction (DocRE), a critical task for understanding complex entity relations within long context. This paper investigates the causes of this performance gap, identifying the dispersion of attention by LLMs due to entity pairs without relations as a key factor. We then introduce a novel classifier-LLM approach to DocRE. Particularly, the proposed approach begins with a classifier designed to select entity pair candidates that exhibit potential relations and then feed them to LLM for final relation classification. This method ensures that the LLM's attention is directed at relation-expressing entity pairs instead of those without relations during inference. Experiments on DocRE benchmarks reveal that our method significantly outperforms recent LLM-based DocRE models and narrows the performance gap with state-of-the-art BERT-based models.
Related papers
- Distilling Transitional Pattern to Large Language Models for Multimodal Session-based Recommendation [67.84581846180458]
Session-based recommendation (SBR) predicts the next item based on anonymous sessions.
Recent Multimodal SBR methods utilize simplistic pre-trained models for modality learning but have limitations in semantic richness.
We propose a multimodal LLM-enhanced framework TPAD, which extends a distillation paradigm to decouple and align transitional patterns for promoting MSBR.
arXiv Detail & Related papers (2025-04-13T07:49:08Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.
We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LF is a goal-oriented latent factor discovery system.
It integrates instruction-following ability with statistical models to handle noisy datasets.
arXiv Detail & Related papers (2025-02-21T02:03:08Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods.
In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators.
arXiv Detail & Related papers (2025-02-03T17:13:03Z) - Will LLMs Replace the Encoder-Only Models in Temporal Relation Classification? [2.1861408994125253]
Large Language Models (LLM) have recently shown promising performance in temporal reasoning tasks.
Recent studies have tested the LLMs' performance in detecting temporal relations of closed-source models only.
arXiv Detail & Related papers (2024-10-14T13:10:45Z) - Enriching Ontologies with Disjointness Axioms using Large Language Models [5.355177558868206]
Large Models (LLMs) offer consistency by identifying and asserting class disjointness axioms.
Our approach aims at leveraging the implicit knowledge embedded in LLMs to elicit knowledge for classifying ontological disjointness.
Our findings suggest that LLMs, when guided by effective prompt strategies, can reliably identify disjointness relationships.
arXiv Detail & Related papers (2024-10-04T09:00:06Z) - Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
This paper presents an enhanced LLM-based recommender (ELMRec)
We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations.
Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
arXiv Detail & Related papers (2024-09-30T06:07:12Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Are LLMs Good Annotators for Discourse-level Event Relation Extraction? [15.365993658296016]
We assess the effectiveness of Large Language Models (LLMs) in addressing discourse-level event relation extraction tasks.
Evaluation is conducted using an commercial model, GPT-3.5, and an open-source model, LLaMA-2.
arXiv Detail & Related papers (2024-07-28T19:27:06Z) - Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks [0.0]
Relation Extraction (RE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs)
Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area.
This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach.
arXiv Detail & Related papers (2024-06-20T21:27:57Z) - Found in the Middle: How Language Models Use Long Contexts Better via
Plug-and-Play Positional Encoding [78.36702055076456]
This paper introduces Multi-scale Positional.
(Ms-PoE) which is a simple yet effective plug-and-play approach to enhance the capacity of.
LLMs to handle relevant information located in the middle of the context.
arXiv Detail & Related papers (2024-03-05T04:58:37Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Semi-automatic Data Enhancement for Document-Level Relation Extraction
with Distant Supervision from Large Language Models [26.523153535336725]
Document-level Relation Extraction (DocRE) aims to extract relations from a long context.
We propose a method integrating a large language model (LLM) and a natural language inference (NLI) module to generate relation triples.
We demonstrate the effectiveness of our approach by introducing an enhanced dataset known as DocGNRE.
arXiv Detail & Related papers (2023-11-13T13:10:44Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
arXiv Detail & Related papers (2023-10-30T12:25:00Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.