DIFFUMA: High-Fidelity Spatio-Temporal Video Prediction via Dual-Path Mamba and Diffusion Enhancement
- URL: http://arxiv.org/abs/2507.06738v1
- Date: Wed, 09 Jul 2025 10:51:54 GMT
- Title: DIFFUMA: High-Fidelity Spatio-Temporal Video Prediction via Dual-Path Mamba and Diffusion Enhancement
- Authors: Xinyu Xie, Weifeng Cao, Jun Shi, Yangyang Hu, Hui Liang, Wanyong Liang, Xiaoliang Qian,
- Abstract summary: We release the Chip Dicing Lane dataset (CHDL), the first public temporal image dataset dedicated to the semiconductor wafer dicing process.<n>We propose DIFFUMA, an innovative dual-path prediction architecture specifically designed for such fine-grained dynamics.<n>Experiments demonstrate that DIFFUMA significantly outperforms existing methods, reducing the Mean Squared Error (MSE) by 39% and improving the Similarity (SSIM) from 0.926 to a near-perfect 0.988.
- Score: 5.333662480077316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatio-temporal video prediction plays a pivotal role in critical domains, ranging from weather forecasting to industrial automation. However, in high-precision industrial scenarios such as semiconductor manufacturing, the absence of specialized benchmark datasets severely hampers research on modeling and predicting complex processes. To address this challenge, we make a twofold contribution.First, we construct and release the Chip Dicing Lane Dataset (CHDL), the first public temporal image dataset dedicated to the semiconductor wafer dicing process. Captured via an industrial-grade vision system, CHDL provides a much-needed and challenging benchmark for high-fidelity process modeling, defect detection, and digital twin development.Second, we propose DIFFUMA, an innovative dual-path prediction architecture specifically designed for such fine-grained dynamics. The model captures global long-range temporal context through a parallel Mamba module, while simultaneously leveraging a diffusion module, guided by temporal features, to restore and enhance fine-grained spatial details, effectively combating feature degradation. Experiments demonstrate that on our CHDL benchmark, DIFFUMA significantly outperforms existing methods, reducing the Mean Squared Error (MSE) by 39% and improving the Structural Similarity (SSIM) from 0.926 to a near-perfect 0.988. This superior performance also generalizes to natural phenomena datasets. Our work not only delivers a new state-of-the-art (SOTA) model but, more importantly, provides the community with an invaluable data resource to drive future research in industrial AI.
Related papers
- SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution [55.14432034345353]
We study key design principles for latter cascaded video super-resolution models, which are underexplored currently.<n>First, we propose two strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator.<n>Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs.
arXiv Detail & Related papers (2025-06-24T17:57:26Z) - LSM-2: Learning from Incomplete Wearable Sensor Data [65.58595667477505]
This paper introduces the second generation of Large Sensor Model (LSM-2) with Adaptive and Inherited Masking (AIM)<n>AIM learns robust representations directly from incomplete data without requiring explicit imputation.<n>Our LSM-2 with AIM achieves the best performance across a diverse range of tasks, including classification, regression and generative modeling.
arXiv Detail & Related papers (2025-06-05T17:57:11Z) - Dual-Expert Consistency Model for Efficient and High-Quality Video Generation [57.33788820909211]
We propose a parameter-efficient textbfDual-Expert Consistency Model(DCM), where a semantic expert focuses on learning semantic layout and motion, while a detail expert specializes in fine detail refinement.<n>Our approach achieves state-of-the-art visual quality with significantly reduced sampling steps, demonstrating the effectiveness of expert specialization in video diffusion model distillation.
arXiv Detail & Related papers (2025-06-03T17:55:04Z) - Remaining Useful Life Prediction: A Study on Multidimensional Industrial Signal Processing and Efficient Transfer Learning Based on Large Language Models [6.118896920507198]
This paper introduces an innovative regression framework utilizing large language models (LLMs) for RUL prediction.
Experiments on the Turbofan engine's RUL prediction task show that the proposed model surpasses state-of-the-art (SOTA) methods.
With minimal target domain data for fine-tuning, the model outperforms SOTA methods trained on full target domain data.
arXiv Detail & Related papers (2024-10-04T04:21:53Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - Fuxi-DA: A Generalized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations [15.934673617658609]
Deep learning models have shown promise in matching, even surpassing, the forecast accuracy of leading NWP models worldwide.
This study introduces FuxiDA, a generalized DL-based DA framework for assimilating satellite observations.
By assimilating data from Advanced Geosynchronous Radiation Imager (AGRI) aboard Fengyun-4B, FuXi-DA consistently mitigates analysis errors and significantly improves forecast performance.
arXiv Detail & Related papers (2024-04-12T15:02:14Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer.
The model distinguishes itself through several significant innovations.
Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models.
arXiv Detail & Related papers (2023-10-03T08:37:21Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
We propose a new architecture, called perceiver-CDF, for modeling cumulative distribution functions (CDF) of time series data.
Our approach combines the perceiver architecture with a copula-based attention mechanism tailored for multimodal time series prediction.
Experiments on the unimodal and multimodal benchmarks consistently demonstrate a 20% improvement over state-of-the-art methods.
arXiv Detail & Related papers (2023-10-03T01:13:17Z) - Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification [0.0]
Data-driven models play a crucial role in digital twins, enabling real-time updates and predictions.
The fidelity of available data and the scarcity of accurate sensor data often hinder the efficient learning of surrogate models.
We propose a novel framework that begins by developing a robust multi-fidelity surrogate model.
arXiv Detail & Related papers (2023-06-26T05:58:17Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.