論文の概要: The Dark Side of LLMs: Agent-based Attacks for Complete Computer Takeover
- arxiv url: http://arxiv.org/abs/2507.06850v4
- Date: Wed, 06 Aug 2025 15:27:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 15:43:09.209131
- Title: The Dark Side of LLMs: Agent-based Attacks for Complete Computer Takeover
- Title(参考訳): LLMのダークサイド:完全なコンピュータ・テイクオーバーのためのエージェント・ベースの攻撃
- Authors: Matteo Lupinacci, Francesco Aurelio Pironti, Francesco Blefari, Francesco Romeo, Luigi Arena, Angelo Furfaro,
- Abstract要約: 大規模言語モデル(LLM)エージェントとマルチエージェントシステムは、前例のないセキュリティ脆弱性を導入している。
本稿では,自律エージェント内の推論エンジンとして使用されるLDMの安全性を総合的に評価する。
我々は、このような買収を組織するために、異なる攻撃面と信頼境界をどのように活用できるかに焦点を当てる。
- 参考スコア(独自算出の注目度): 0.18472148461613155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid adoption of Large Language Model (LLM) agents and multi-agent systems enables remarkable capabilities in natural language processing and generation. However, these systems introduce unprecedented security vulnerabilities that extend beyond traditional content generation attacks to system-level compromise. This paper presents a comprehensive evaluation of the security of LLMs used as reasoning engines within autonomous agents, highlighting how they can be exploited as attack vectors capable of achieving complete computer takeover. We focus on how different attack surfaces and trust boundaries - Direct Prompt Injection, RAG Backdoor, and Inter Agent Trust - can be leveraged to orchestrate such takeovers. We demonstrate that adversaries can effectively coerce popular LLMs (including GPT-4, Claude-4 and Gemini-2.5) into autonomously installing and executing malware on victim machines. Our evaluation of 18 state-of-the-art LLMs reveals an alarming scenario: 94.4% of models succumb to Direct Prompt Injection and 83.3% are vulnerable to the more stealth and evasive RAG Backdoor Attack. Notably, we tested trust boundaries within multi-agent systems, where LLM agents interact and influence each other, and we revealed a critical security flaw: LLMs which successfully resist direct injection or RAG backdoor will execute identical payloads when requested by peer agents. Our findings show that 100.0% of tested LLMs can be compromised through Inter-Agent Trust Exploitation attacks and that every model exhibits context-dependent security behaviors that create exploitable blind spots. Our results also highlight the need to increase awareness and research on the security risks of LLMs, showing a paradigm shift in cybersecurity threats, where AI tools themselves become sophisticated attack vectors.
- Abstract(参考訳): 大規模言語モデル(LLM)エージェントとマルチエージェントシステムの急速な採用は、自然言語処理と生成において顕著な機能を実現する。
しかし、これらのシステムは、従来のコンテンツ生成攻撃からシステムレベルの妥協まで、前例のないセキュリティ脆弱性を導入している。
本稿では、自律エージェント内の推論エンジンとして使用されるLSMのセキュリティを総合的に評価し、完全なコンピュータの乗っ取りを達成できる攻撃ベクトルとしてどのように活用できるかを明らかにする。
我々は、ダイレクト・プロンプト・インジェクション、RAGバックドア、インターエージェント・トラストといった異なるアタック・サーフェスとトラスト・バウンダリ(信頼境界)をどのように活用するかに焦点を当てている。
GPT-4, Claude-4, Gemini-2.5 など,人気の LLM を自律的にマルウェアをインストールし, 実行するために効果的に対処できることを実証した。
94.4%のモデルがダイレクト・プロンプト・インジェクション、83.3%はよりステルスで回避可能なRAGバックドア・アタックに対して脆弱である。
特に, LLMエージェントが相互に作用し, 影響を及ぼすマルチエージェントシステム内の信頼境界を検証したところ, 重大なセキュリティ上の欠陥が明らかになった。
調査の結果,試験用LSMの100.0%は,インターエージェント・トラスト・エクスプロイテーション・アタック(Inter-Agent Trust Exploitation attack)によって損なわれ,どのモデルも,悪用可能な盲点を生み出すような状況に依存したセキュリティ行動を示すことがわかった。
我々の結果は、LLMのセキュリティリスクに対する認識と研究の向上の必要性を強調しており、AIツール自体が高度な攻撃ベクトルとなるサイバーセキュリティ脅威のパラダイムシフトを示している。
関連論文リスト
- From Assistants to Adversaries: Exploring the Security Risks of Mobile LLM Agents [17.62574693254363]
モバイル大言語モデル(LLM)の総合的セキュリティ解析について紹介する。
言語ベースの推論,GUIベースのインタラクション,システムレベルの実行という,3つのコア機能領域にわたるセキュリティ上の脅威を特定します。
分析の結果,11個の異なる攻撃面が明らかとなり,それぞれが移動型LDMエージェントのユニークな機能と相互作用パターンに根ざしていることがわかった。
論文 参考訳(メタデータ) (2025-05-19T11:17:46Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentVigilを提案する。
我々はAgentVigilをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System [0.8136541584281987]
本研究は,3つの検査手法を用いて,逆チューリングテストによりローグエージェントを検出し,マルチエージェントシミュレーションにより知覚的アライメントを解析する。
GEMINI 1.5 Pro と llama-3.3-70B, Deepseek r1 モデルを用いて, 抗ジェイルブレイクシステムを開発した。
GEMINI 1.5 Proの94%の精度など、検出能力は強いが、長時間の攻撃を受けた場合、システムは永続的な脆弱性に悩まされる。
論文 参考訳(メタデータ) (2025-02-23T23:35:15Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。
本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。
我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (2025-02-12T17:19:36Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
大規模言語モデル(LLM)を駆使したAIエージェントは、シームレスで自然な、コンテキスト対応のコミュニケーションを可能にすることによって、人間とコンピュータのインタラクションを変革した。
本稿では,AIエージェント内のLLMコアを標的とした敵攻撃という,重大な脆弱性について検討する。
論文 参考訳(メタデータ) (2024-12-05T18:38:30Z) - AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents [84.96249955105777]
LLMエージェントは誤用された場合、より大きなリスクを引き起こすが、その堅牢性は未発見のままである。
我々は, LLMエージェント誤用の研究を容易にするために, AgentHarmと呼ばれる新しいベンチマークを提案する。
主要なLLMは、ジェイルブレイクなしで悪意のあるエージェント要求に驚くほど準拠している。
論文 参考訳(メタデータ) (2024-10-11T17:39:22Z) - Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification [35.16099878559559]
大規模言語モデル(LLM)は大きな発展を遂げ、現実世界のアプリケーションにデプロイされている。
エージェントが繰り返しまたは無関係なアクションを実行することを誤解させることで誤動作を引き起こす新しいタイプの攻撃を導入する。
実験の結果、これらの攻撃は複数のシナリオで80%以上の障害率を誘導できることがわかった。
論文 参考訳(メタデータ) (2024-07-30T14:35:31Z) - Can We Trust Embodied Agents? Exploring Backdoor Attacks against Embodied LLM-based Decision-Making Systems [27.316115171846953]
大規模言語モデル(LLM)は、実世界のAI意思決定タスクにおいて大きな可能性を示している。
LLMは、固有の常識と推論能力を活用するために微調整され、特定の用途に適合する。
この微調整プロセスは、特に安全クリティカルなサイバー物理システムにおいて、かなりの安全性とセキュリティの脆弱性をもたらす。
論文 参考訳(メタデータ) (2024-05-27T17:59:43Z) - InjecAgent: Benchmarking Indirect Prompt Injections in Tool-Integrated Large Language Model Agents [3.5248694676821484]
IPI攻撃に対するツール統合LDMエージェントの脆弱性を評価するためのベンチマークであるInjecAgentを紹介する。
InjecAgentは17の異なるユーザーツールと62の攻撃ツールをカバーする1,054のテストケースで構成されている。
エージェントはIPI攻撃に対して脆弱であり、ReAct-prompted GPT-4は24%の時間攻撃に対して脆弱である。
論文 参考訳(メタデータ) (2024-03-05T06:21:45Z) - Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents [47.219047422240145]
我々は、LSMベースのエージェントに対して、典型的な安全脅威であるバックドアアタックの1つを調査する第一歩を踏み出した。
具体的には、ユーザ入力とモデル出力のみを操作できる従来のLDMに対するバックドア攻撃と比較して、エージェントバックドア攻撃はより多様で隠蔽的な形式を示す。
論文 参考訳(メタデータ) (2024-02-17T06:48:45Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。