Investigating the Robustness of Retrieval-Augmented Generation at the Query Level
- URL: http://arxiv.org/abs/2507.06956v1
- Date: Wed, 09 Jul 2025 15:39:17 GMT
- Title: Investigating the Robustness of Retrieval-Augmented Generation at the Query Level
- Authors: Sezen Perçin, Xin Su, Qutub Sha Syed, Phillip Howard, Aleksei Kuvshinov, Leo Schwinn, Kay-Ulrich Scholl,
- Abstract summary: Retrieval-augmented generation (RAG) has been proposed as a solution that dynamically incorporates external knowledge during inference.<n>Despite its promise, RAG systems face practical challenges-most notably, a strong dependence on the quality of the input query for accurate retrieval.
- Score: 4.3028340012580975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are very costly and inefficient to update with new information. To address this limitation, retrieval-augmented generation (RAG) has been proposed as a solution that dynamically incorporates external knowledge during inference, improving factual consistency and reducing hallucinations. Despite its promise, RAG systems face practical challenges-most notably, a strong dependence on the quality of the input query for accurate retrieval. In this paper, we investigate the sensitivity of different components in the RAG pipeline to various types of query perturbations. Our analysis reveals that the performance of commonly used retrievers can degrade significantly even under minor query variations. We study each module in isolation as well as their combined effect in an end-to-end question answering setting, using both general-domain and domain-specific datasets. Additionally, we propose an evaluation framework to systematically assess the query-level robustness of RAG pipelines and offer actionable recommendations for practitioners based on the results of more than 1092 experiments we performed.
Related papers
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - RARE: Retrieval-Aware Robustness Evaluation for Retrieval-Augmented Generation Systems [35.47591417637136]
Retrieval-Augmented Generation (RAG) enhances recency and factuality in answers.<n>Existing evaluations rarely test how well these systems cope with real-world noise, conflicting between internal and external retrieved contexts, or fast-changing facts.<n>We introduce Retrieval-Aware Robustness Evaluation (RARE), a unified framework and large-scale benchmark that jointly stress-test query and document perturbations over dynamic, time-sensitive corpora.
arXiv Detail & Related papers (2025-06-01T02:42:36Z) - MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation [8.950307082012763]
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs)<n>We present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation.<n>MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks.
arXiv Detail & Related papers (2025-04-23T23:05:46Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.<n>We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity [23.48167670445722]
Retrieval-Augmented Generation (RAG) aims to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources.
evaluating these systems remains a crucial research area due to the following issues.
We propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline.
arXiv Detail & Related papers (2024-10-16T05:20:32Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - RAGGED: Towards Informed Design of Scalable and Stable RAG Systems [51.171355532527365]
Retrieval-augmented generation (RAG) enhances language models by integrating external knowledge.<n>RAGGED is a framework for systematically evaluating RAG systems.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.