論文の概要: A multi-modal dataset for insect biodiversity with imagery and DNA at the trap and individual level
- arxiv url: http://arxiv.org/abs/2507.06972v1
- Date: Wed, 09 Jul 2025 16:03:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.656454
- Title: A multi-modal dataset for insect biodiversity with imagery and DNA at the trap and individual level
- Title(参考訳): トラップと個体レベルでの画像とDNAを用いた昆虫の生物多様性のためのマルチモーダルデータセット
- Authors: Johanna Orsholm, John Quinto, Hannu Autto, Gaia Banelyte, Nicolas Chazot, Jeremy deWaard, Stephanie deWaard, Arielle Farrell, Brendan Furneaux, Bess Hardwick, Nao Ito, Amlan Kar, Oula Kalttopää, Deirdre Kerdraon, Erik Kristensen, Jaclyn McKeown, Tommi Mononen, Ellen Nein, Hanna Rogers, Tomas Roslin, Paula Schmitz, Jayme Sones, Maija Sujala, Amy Thompson, Evgeny V. Zakharov, Iuliia Zarubiieva, Akshita Gupta, Scott C. Lowe, Graham W. Taylor,
- Abstract要約: 本研究は,昆虫標本の自動分類器を訓練するための混合節足類標本同定データセット(MassID45)について述べる。
これは、分類されていないサンプルレベルと、個々の標本の完全なセットの両方で、分子とイメージングのデータを一意に組み合わせている。
AI支援ツールによって支えられた人間のアノテーションは、各節足動物の周囲にセグメンテーションマスクを作成し、17万以上の標本に分類学的ラベルを割り当てるという、バルク画像の2つのタスクを実行した。
- 参考スコア(独自算出の注目度): 12.817729932901779
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insects comprise millions of species, many experiencing severe population declines under environmental and habitat changes. High-throughput approaches are crucial for accelerating our understanding of insect diversity, with DNA barcoding and high-resolution imaging showing strong potential for automatic taxonomic classification. However, most image-based approaches rely on individual specimen data, unlike the unsorted bulk samples collected in large-scale ecological surveys. We present the Mixed Arthropod Sample Segmentation and Identification (MassID45) dataset for training automatic classifiers of bulk insect samples. It uniquely combines molecular and imaging data at both the unsorted sample level and the full set of individual specimens. Human annotators, supported by an AI-assisted tool, performed two tasks on bulk images: creating segmentation masks around each individual arthropod and assigning taxonomic labels to over 17 000 specimens. Combining the taxonomic resolution of DNA barcodes with precise abundance estimates of bulk images holds great potential for rapid, large-scale characterization of insect communities. This dataset pushes the boundaries of tiny object detection and instance segmentation, fostering innovation in both ecological and machine learning research.
- Abstract(参考訳): 昆虫は数百万の種を産み、多くの種は環境や生息地の変化によって個体数が激減する。
昆虫の多様性の理解を促進するためには,DNAバーコードと高解像度イメージングが不可欠である。
しかし、画像に基づくアプローチのほとんどは、大規模な生態調査で収集された未分類のバルクサンプルとは異なり、個々の標本データに依存している。
本研究は,ミツバチの標本の自動分類装置を訓練するための混成節足類標本分類と同定(MassID45)データセットについて述べる。
これは、分類されていないサンプルレベルと、個々の標本の完全なセットの両方で、分子とイメージングのデータを一意に組み合わせている。
AI支援ツールによって支えられた人間のアノテーションは、各節足動物の周囲にセグメンテーションマスクを作成し、17万以上の標本に分類学的ラベルを割り当てるという、バルク画像の2つのタスクを実行した。
DNAバーコードの分類学的解像度とバルク画像の正確な量の推定を組み合わせることは、昆虫群集の迅速かつ大規模な特徴付けに大きな可能性を秘めている。
このデータセットは、小さなオブジェクト検出とインスタンスセグメンテーションの境界を押し上げ、生態学と機械学習の両方の研究におけるイノベーションを促進する。
関連論文リスト
- BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning [51.341003735575335]
生体視覚モデルでは,大規模コントラスト視覚言語学習により創発的行動が観察される。
我々は、異なる種を区別するために、TreeOfLife-200MでBioCLIP 2を訓練する。
得られたBioCLIP 2の埋め込み空間における創発的特性を同定する。
論文 参考訳(メタデータ) (2025-05-29T17:48:20Z) - CrypticBio: A Large Multimodal Dataset for Visually Confusing Biodiversity [3.73232466691291]
我々はCrypticBioについて紹介する。
iNaturalistのコミュニティアノテーターの間では、実際の種誤認の傾向から批判され、CrypticBioは67K種にまたがる52Kの独特な暗号グループを含んでいる。
論文 参考訳(メタデータ) (2025-05-16T14:35:56Z) - BeetleVerse: A study on taxonomic classification of ground beetles [0.310688583550805]
地上の甲虫は、非常に敏感で特異な生物学的指標であり、生物多様性のモニタリングに不可欠である。
本稿では,4つの多種多様な長い尾を持つデータセットの分類分類に関する12の視覚モデルを評価する。
論文 参考訳(メタデータ) (2025-04-18T01:06:37Z) - A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect
Dataset [18.211840156134784]
本稿では,画像に基づく分類学的評価が可能なコンピュータビジョンモデルの訓練を目的とした,100万画像データセットを提案する。
このデータセットは魅力的な特徴も示しており、その研究はより広範な機械学習コミュニティにとって興味深いものとなるだろう。
論文 参考訳(メタデータ) (2023-07-19T20:54:08Z) - Wild Face Anti-Spoofing Challenge 2023: Benchmark and Results [73.98594459933008]
顔認証システム(FAS)は、顔認識システムの完全性を保護するための重要なメカニズムである。
この制限は、公開可能なFASデータセットの不足と多様性の欠如に起因する可能性がある。
制約のない環境で収集された大規模で多様なFASデータセットであるWild Face Anti-Spoofingデータセットを紹介した。
論文 参考訳(メタデータ) (2023-04-12T10:29:42Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。