論文の概要: Generating Multi-Table Time Series EHR from Latent Space with Minimal Preprocessing
- arxiv url: http://arxiv.org/abs/2507.06996v1
- Date: Wed, 09 Jul 2025 16:22:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.669698
- Title: Generating Multi-Table Time Series EHR from Latent Space with Minimal Preprocessing
- Title(参考訳): 最小前処理による遅延空間からのマルチテーブル時系列EHRの生成
- Authors: Eunbyeol Cho, Jiyoun Kim, Minjae Lee, Sungjin Park, Edward Choi,
- Abstract要約: 我々はRawMedを紹介した。RawMedは、生のEHRによく似たマルチテーブル時系列EHRデータを合成する最初のフレームワークである。
テキストベースの表現と圧縮技術を使用して、RawMedは最小の事前処理で複雑な構造と時間的ダイナミクスをキャプチャする。
また,マルチテーブル時系列合成 EHR のための新たな評価フレームワークを提案し,分布の類似性,テーブル間関係,時間的ダイナミクス,プライバシを評価する。
- 参考スコア(独自算出の注目度): 10.390646796231438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic Health Records (EHR) are time-series relational databases that record patient interactions and medical events over time, serving as a critical resource for healthcare research and applications. However, privacy concerns and regulatory restrictions limit the sharing and utilization of such sensitive data, necessitating the generation of synthetic EHR datasets. Unlike previous EHR synthesis methods, which typically generate medical records consisting of expert-chosen features (e.g. a few vital signs or structured codes only), we introduce RawMed, the first framework to synthesize multi-table, time-series EHR data that closely resembles raw EHRs. Using text-based representation and compression techniques, RawMed captures complex structures and temporal dynamics with minimal preprocessing. We also propose a new evaluation framework for multi-table time-series synthetic EHRs, assessing distributional similarity, inter-table relationships, temporal dynamics, and privacy. Validated on two open-source EHR datasets, RawMed outperforms baseline models in fidelity and utility. The code is available at https://github.com/eunbyeol-cho/RawMed.
- Abstract(参考訳): 電子健康記録(Electronic Health Records, EHR)は、患者の相互作用と医療イベントを時間とともに記録する時系列関係データベースである。
しかし、プライバシー上の懸念と規制上の制約は、このような機密データの共有と利用を制限し、合成EHRデータセットを生成する必要がある。
従来のEHR合成法とは違って,生のEHRによく似たマルチテーブル・時系列のEHRデータを合成する最初のフレームワークであるRawMedを導入する。
テキストベースの表現と圧縮技術を使用して、RawMedは最小の事前処理で複雑な構造と時間的ダイナミクスをキャプチャする。
また,マルチテーブル時系列合成 EHR のための新たな評価フレームワークを提案し,分布の類似性,テーブル間関係,時間的ダイナミクス,プライバシを評価する。
オープンソースの2つのEHRデータセットで検証されたRawMedは、忠実さと実用性でベースラインモデルを上回っている。
コードはhttps://github.com/eunbyeol-cho/RawMed.comで公開されている。
関連論文リスト
- HC-LLM: Historical-Constrained Large Language Models for Radiology Report Generation [89.3260120072177]
本稿では,放射線学レポート生成のための歴史制約付き大規模言語モデル (HC-LLM) フレームワークを提案する。
胸部X線写真から経時的特徴と経時的特徴を抽出し,疾患の進行を捉える診断報告を行った。
特に,本手法は,テスト中の履歴データなしでも良好に動作し,他のマルチモーダル大規模モデルにも容易に適用可能である。
論文 参考訳(メタデータ) (2024-12-15T06:04:16Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation [22.94521527609479]
EMERGEはRetrieval-Augmented Generation(RAG)駆動のフレームワークであり、マルチモーダルEHR予測モデリングを強化する。
時系列データと臨床ノートからエンティティを抽出し,LLM(Large Language Models)を誘導し,プロのPrimeKGと整合させる。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - Multimodal Fusion of EHR in Structures and Semantics: Integrating Clinical Records and Notes with Hypergraph and LLM [39.25272553560425]
本稿では,EHRにおける構造と意味を効果的に統合するMINGLEという新しいフレームワークを提案する。
本フレームワークでは,医療概念のセマンティクスと臨床ノートのセマンティクスをハイパーグラフニューラルネットワークに組み合わせるために,2段階の注入戦略を採用している。
2つのEHRデータセット(パブリックMIMIC-IIIとプライベートCRADLE)の実験結果から、MINGLEは予測性能を11.83%向上できることが示された。
論文 参考訳(メタデータ) (2024-02-19T23:48:40Z) - Collaborative Synthesis of Patient Records through Multi-Visit Health
State Inference [25.121296198656758]
協調EHR合成のための多視点健康状態推定モデルMSICを提案する。
確率的グラフィカルモデルとして合成EHR生成過程を定式化する。
我々は、過去の記録を効果的に活用し、現在および将来の記録を合成するために、マルチビジットシナリオに適した健康状態推定法を導出する。
論文 参考訳(メタデータ) (2023-12-22T12:28:29Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
EHR-M-GAN (Generative Adversarial Network, GAN) は、EHRデータを合成する。
EHR-M-GANは,141,488名の患者を対象とし,3つの公用集中治療単位データベース上で検証した。
論文 参考訳(メタデータ) (2021-12-22T17:17:34Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Generating Electronic Health Records with Multiple Data Types and
Constraints [17.32526100692928]
電子健康記録(EHR)を大規模に共有することは、プライバシー侵害につながる可能性がある。
近年の研究では、GAN(Generative Adversarial Network)フレームワークを通じてEHRをシミュレートすることでリスクを軽減できることが示されている。
本稿では,1)GANモデルの精細化,2)特徴制約の説明,3)そのような生成タスクに対する重要なユーティリティ対策の導入により,複数のデータタイプからなるEHRをシミュレートする手法を提案する。
論文 参考訳(メタデータ) (2020-03-17T19:25:16Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
臨床試験は医薬品開発に不可欠であるが、高価で不正確で不十分な患者募集に苦しむことが多い。
DeepEnrollは、入力基準(タブラリデータ)を一致する推論のための共有潜在空間に共同でエンコードする、クロスモーダル推論学習モデルである。
論文 参考訳(メタデータ) (2020-01-22T17:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。