論文の概要: FlexOlmo: Open Language Models for Flexible Data Use
- arxiv url: http://arxiv.org/abs/2507.07024v1
- Date: Wed, 09 Jul 2025 16:54:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.685685
- Title: FlexOlmo: Open Language Models for Flexible Data Use
- Title(参考訳): FlexOlmo: 柔軟なデータ使用のためのオープン言語モデル
- Authors: Weijia Shi, Akshita Bhagia, Kevin Farhat, Niklas Muennighoff, Pete Walsh, Jacob Morrison, Dustin Schwenk, Shayne Longpre, Jake Poznanski, Allyson Ettinger, Daogao Liu, Margaret Li, Dirk Groeneveld, Mike Lewis, Wen-tau Yih, Luca Soldaini, Kyle Lo, Noah A. Smith, Luke Zettlemoyer, Pang Wei Koh, Hannaneh Hajishirzi, Ali Farhadi, Sewon Min,
- Abstract要約: 我々は、データ共有なしで分散トレーニングをサポートする新しい言語モデル(LM)であるFlexOlmoを紹介します。
FlexOlmoはエキスパートの混成アーキテクチャを採用しており、各専門家はクローズドデータセットで独立して訓練される。
我々は、公開データで訓練された一般専門家と、他のデータ所有者から独立した訓練を受けた専門家とを効果的に組み合わせることができることを示す。
- 参考スコア(独自算出の注目度): 184.87790266932316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce FlexOlmo, a new class of language models (LMs) that supports (1) distributed training without data sharing, where different model parameters are independently trained on closed datasets, and (2) data-flexible inference, where these parameters along with their associated data can be flexibly included or excluded from model inferences with no further training. FlexOlmo employs a mixture-of-experts (MoE) architecture where each expert is trained independently on closed datasets and later integrated through a new domain-informed routing without any joint training. FlexOlmo is trained on FlexMix, a corpus we curate comprising publicly available datasets alongside seven domain-specific sets, representing realistic approximations of closed sets. We evaluate models with up to 37 billion parameters (20 billion active) on 31 diverse downstream tasks. We show that a general expert trained on public data can be effectively combined with independently trained experts from other data owners, leading to an average 41% relative improvement while allowing users to opt out of certain data based on data licensing or permission requirements. Our approach also outperforms prior model merging methods by 10.1% on average and surpasses the standard MoE trained without data restrictions using the same training FLOPs. Altogether, this research presents a solution for both data owners and researchers in regulated industries with sensitive or protected data. FlexOlmo enables benefiting from closed data while respecting data owners' preferences by keeping their data local and supporting fine-grained control of data access during inference.
- Abstract(参考訳): 我々は,(1)データ共有のない分散トレーニングをサポートする新しい言語モデル (LM) であるFlexOlmoを紹介した。
FlexOlmoはMix-of-experts(MoE)アーキテクチャを採用している。各専門家は、クローズドデータセットを独立してトレーニングし、その後、共同トレーニングなしで新しいドメインインフォームドルーティングを通じて統合される。
FlexOlmoは、公開データセットと7つのドメイン固有のセットからなるコーパスであるFlexMixでトレーニングされており、クローズドセットの現実的な近似を表している。
最大37億パラメータ(200億アクティブ)のモデルを31の下流タスクで評価する。
公開データで訓練された一般専門家が、他のデータ所有者から独立した訓練を受けた専門家と効果的に結合できることを示し、ユーザーがデータライセンスや許可要件に基づいて特定のデータからオプトアウトできるようにすることで、平均41%の相対的な改善を実現している。
また,本手法は,従来のモデルマージ手法を平均10.1%上回り,データ制限なしでトレーニングされた標準MoEよりも優れている。
さらに、この研究は、機密データや保護データを持つ規制産業におけるデータ所有者と研究者の両方に解決策を提示している。
FlexOlmoはデータをローカルに保ち、推論中にデータアクセスのきめ細かい制御をサポートすることで、データ所有者の好みを尊重しながら、クローズドなデータから恩恵を受けることができる。
関連論文リスト
- Not All Clients Are Equal: Personalized Federated Learning on Heterogeneous Multi-Modal Clients [52.14230635007546]
ファンデーションモデルは多様なマルチモーダルタスクにまたがって顕著な能力を示してきたが、その集中的なトレーニングはプライバシーの懸念を高め、高い伝達コストを引き起こす。
異なるユーザー目的のためにAIモデルをパーソナライズする需要が高まっているため、パーソナライズされたフェデレーションラーニング(PFL)が出現している。
PFLは、各クライアントが他のクライアントの知識を活用して、データを共有することなく、個々のユーザの好みにさらに適応することを可能にする。
論文 参考訳(メタデータ) (2025-05-20T09:17:07Z) - Personalized Federated Fine-Tuning for LLMs via Data-Driven Heterogeneous Model Architectures [15.645254436094055]
Federated Learning (FL) は、生データにアクセスすることなく、大規模言語モデルの協調的な微調整を可能にする。
データ駆動の異種モデルアーキテクチャを実現する軽量なパーソナライズFLフレームワークであるFedAMoLEを提案する。
実験の結果、FedAMoLEはクライアントサイドのパフォーマンスを既存のアプローチと比べて平均5.14%改善している。
論文 参考訳(メタデータ) (2024-11-28T13:20:38Z) - FedLLM-Bench: Realistic Benchmarks for Federated Learning of Large Language Models [48.484485609995986]
フェデレートラーニングにより、複数のパーティがデータを直接共有することなく、協力的に大きな言語モデルをトレーニングできるようになった(FedLLM)。
現在、FedLLMの現実的なデータセットやベンチマークは存在しない。
我々は,8つのトレーニング手法,4つのトレーニングデータセット,6つの評価指標を含むFedLLM-Benchを提案する。
論文 参考訳(メタデータ) (2024-06-07T11:19:30Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
異なるエッジデバイス(クライアント)にまたがるローカルデータの不均一な分散は、フェデレート学習における遅いモデルトレーニングと精度の低下をもたらす。
この研究は、実世界のデータセット、すなわちクラスタスキューで発生する新しい非IID型を導入している。
我々は,各クライアントのインパクト要因を適応的に決定するために,深層強化学習を用いた新しいFLモデルであるFedDRLを提案する。
論文 参考訳(メタデータ) (2022-08-04T04:24:16Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised Federated Learning (FL)は、複数のクライアントがラベル付きデータを共有せずにトレーニングされたモデルを共有することを可能にする。
本研究では,教師なし学習(FedUL)のフェデレーションを提案し,各クライアントのラベル付きデータにラベル付きデータを変換する。
論文 参考訳(メタデータ) (2022-04-07T09:12:00Z) - Federated Mixture of Experts [94.25278695272874]
FedMixは特別なモデルのアンサンブルをトレーニングできるフレームワークです。
類似したデータ特性を持つユーザが同じメンバーを選択して統計的強度を共有することを示す。
論文 参考訳(メタデータ) (2021-07-14T14:15:24Z) - Unifying Distillation with Personalization in Federated Learning [1.8262547855491458]
Federated Learning(FL)は、クライアントがデータを共有せずに中央アグリゲータを通じて共同作業モデルを学習する分散プライバシ保護学習技術である。
この設定では、すべてのクライアントが単一の共通予測器(FedAvg)を学習する。
本稿では,2段階のパーソナライズされた学習アルゴリズムPersFLを用いてこの問題に対処する。
第1段階では、PersFLはFLトレーニングフェーズにおいて各クライアントの最適な教師モデルを見つけ、第2段階では、PersFLは有用な知識を抽出する。
論文 参考訳(メタデータ) (2021-05-31T17:54:29Z) - SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT
Systems [15.796325306292134]
フェデレートラーニング(FL)は、データプライバシを維持しながら、エッジデバイス上で共有モデルの協調トレーニングを可能にする。
様々なパーソナライズされたアプローチが提案されているが、そのようなアプローチはデータ分散の根底にある変化に対処できない。
本稿では,ブロックチェーンとフェデレーション学習に基づく動的に最適化された個人深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-12T02:57:05Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
フェデレートラーニング(FL)は、分散参加者が個々のデータのプライバシを犠牲にすることなく、強力なグローバルモデルを集合的に学習することを可能にする。
我々はFedH2Lを導入し、これはモデルアーキテクチャに非依存であり、参加者間で異なるデータ分散に対して堅牢である。
パラメータや勾配を共有するアプローチとは対照的に、FedH2Lは相互蒸留に依存し、参加者間で共有シードセットの後方のみを分散的に交換する。
論文 参考訳(メタデータ) (2021-01-27T10:10:18Z) - FedSmart: An Auto Updating Federated Learning Optimization Mechanism [23.842595615337565]
フェデレーション学習は、データのプライバシ保護に重要な貢献をしている。
データ共有戦略や事前トレーニングのような、非IIDデータに対するモデルの堅牢性を保証する既存の方法は、プライバシリークにつながる可能性がある。
本稿では、最適化のための性能に基づくパラメータ戻り手法を導入し、フェデレートSmartと呼ぶ。
論文 参考訳(メタデータ) (2020-09-16T03:59:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。