Introduction to Quantum Error Correction with Stabilizer Codes
- URL: http://arxiv.org/abs/2507.07121v1
- Date: Tue, 08 Jul 2025 03:29:50 GMT
- Title: Introduction to Quantum Error Correction with Stabilizer Codes
- Authors: Zachary P. Bradshaw, Jeffrey J. Dale, Ethan N. Evans,
- Abstract summary: We give an introduction to the theory of quantum error correction using stabilizer codes.<n>We discuss the more general theory of stabilizer codes and provide the necessary level of mathematical detail for the non-mathematician.<n>We give implementations of the codes we mention using OpenQASM, and we address the more recent approaches to decoding using neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give an introduction to the theory of quantum error correction using stabilizer codes that is geared towards the working computer scientists and mathematicians with an interest in exploring this area. To this end, we begin with an introduction to basic quantum computation for the uninitiated. We then construct several examples of simple error correcting codes without reference to the underlying mathematical formalism in order to develop the readers intuition for the structure of a generic code. With this in hand, we then discuss the more general theory of stabilizer codes and provide the necessary level of mathematical detail for the non-mathematician. Finally, we give a brief look at the elegant homological algebra formulation for topological codes. As a bonus, we give implementations of the codes we mention using OpenQASM, and we address the more recent approaches to decoding using neural networks. We do not attempt to give a complete overview of the entire field, but provide the reader with the level of detail needed to continue in this direction.
Related papers
- Homology, Hopf Algebras and Quantum Code Surgery [55.2480439325792]
We study quantum error-correction codes from an algebraic perspective.<n>We derive new methods of performing fault-tolerant quantum computation.<n>At its core, this thesis asks: what is lattice surgery?
arXiv Detail & Related papers (2025-08-02T21:38:33Z) - Universal fault-tolerant logic with heterogeneous holographic codes [38.98035278249248]
We introduce a new class of holographic codes that realize the ability to support universal fault-tolerant quantum logic.<n>Unlike standard tunabled codes, we establish that the new codes can encode more than a single logical qubit per code block.<n>Our work strengthens the case for the utility of holographic quantum codes for practical quantum computing.
arXiv Detail & Related papers (2025-04-14T16:28:33Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Qudit-based quantum error-correcting codes from irreducible representations of SU(d) [0.0]
Qudits naturally correspond to multi-level quantum systems, but their reliability is contingent upon quantum error correction capabilities.
We present a general procedure for constructing error-correcting qudit codes through the irreducible representations of $mathrmSU(d)$ for any odd integer $d geq 3.$
We use our procedure to construct an infinite class of error-correcting codes encoding a logical qudit into $(d-1)2$ physical qudits.
arXiv Detail & Related papers (2024-10-03T11:35:57Z) - Quotient Space Quantum Codes [0.0]
In this paper, I establish the quotient space codes to construct quantum codes.
These new codes unify additive codes and codeword stabilized codes and can transmit classical codewords.
I also present new bounds for quantum codes and provide a simple proof of the quantum Singleton bound.
arXiv Detail & Related papers (2023-11-13T12:03:59Z) - Quantum Lego Expansion Pack: Enumerators from Tensor Networks [1.489619600985197]
We provide the first tensor network method for computing quantum weight enumerators in the most general form.
For non-(Pauli)-stabilizer codes, this constitutes the current best algorithm for computing the code distance.
We show that these enumerators can be used to compute logical error rates exactly and thus construct decoders for any i.i.d. single qubit or qudit error channels.
arXiv Detail & Related papers (2023-08-09T18:00:02Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Stabilizer Formalism for Operator Algebra Quantum Error Correction [0.0]
We introduce a stabilizer formalism for the general quantum error correction framework called operator algebra quantum error correction (OAQEC)
We formulate a theorem that fully characterizes the Pauli errors that are correctable for a given code.
We show how some recent hybrid subspace code constructions are captured by the formalism.
arXiv Detail & Related papers (2023-04-22T16:45:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Understanding holographic error correction via unique algebras and
atomic examples [0.25782420501870296]
We introduce a fully constructive characterisation of holographic quantum error-correcting codes.
We employ quantum circuits to construct a number of examples of holographic codes.
arXiv Detail & Related papers (2021-10-27T18:17:37Z) - Polar Codes for Quantum Reading [0.0]
We show how to construct low complexity encoding schemes that are interesting for channel discrimination.
We also show that the error probability of the scheme proposed decays exponentially with respect to the code length.
An analysis of the optimal quantum states to be used as probes is given.
arXiv Detail & Related papers (2020-12-14T01:24:11Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
We present a proposed fault-tolerant quantum computer based on cat codes with outer quantum error-correcting codes.
We numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code.
We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer.
arXiv Detail & Related papers (2020-12-07T23:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.