Explainable Artificial Intelligence in Biomedical Image Analysis: A Comprehensive Survey
- URL: http://arxiv.org/abs/2507.07148v1
- Date: Wed, 09 Jul 2025 08:42:14 GMT
- Title: Explainable Artificial Intelligence in Biomedical Image Analysis: A Comprehensive Survey
- Authors: Getamesay Haile Dagnaw, Yanming Zhu, Muhammad Hassan Maqsood, Wencheng Yang, Xingshuai Dong, Xuefei Yin, Alan Wee-Chung Liew,
- Abstract summary: We systematically categorize XAI methods, analyzing their underlying principles, strengths, and limitations within biomedical contexts.<n>We examine the emerging role of multimodal learning and vision-language models in explainable biomedical AI.
- Score: 14.834301782789277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable artificial intelligence (XAI) has become increasingly important in biomedical image analysis to promote transparency, trust, and clinical adoption of DL models. While several surveys have reviewed XAI techniques, they often lack a modality-aware perspective, overlook recent advances in multimodal and vision-language paradigms, and provide limited practical guidance. This survey addresses this gap through a comprehensive and structured synthesis of XAI methods tailored to biomedical image analysis.We systematically categorize XAI methods, analyzing their underlying principles, strengths, and limitations within biomedical contexts. A modality-centered taxonomy is proposed to align XAI methods with specific imaging types, highlighting the distinct interpretability challenges across modalities. We further examine the emerging role of multimodal learning and vision-language models in explainable biomedical AI, a topic largely underexplored in previous work. Our contributions also include a summary of widely used evaluation metrics and open-source frameworks, along with a critical discussion of persistent challenges and future directions. This survey offers a timely and in-depth foundation for advancing interpretable DL in biomedical image analysis.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - A Survey of Multimodal Ophthalmic Diagnostics: From Task-Specific Approaches to Foundational Models [28.34025112894094]
The review focuses on two main categories: task-specific multimodal approaches and large-scale multimodal foundation models.<n>The survey critically examines important datasets, evaluation metrics, and methodological innovations.<n>It also discusses ongoing challenges such as variability in data, limited annotations, lack of interpretability, and issues with generalizability across different patient populations.
arXiv Detail & Related papers (2025-07-31T10:49:21Z) - AURA: A Multi-Modal Medical Agent for Understanding, Reasoning & Annotation [0.8397730500554048]
AURA is the first visual linguistic explainability agent designed specifically for comprehensive analysis, explanation, and evaluation of medical images.<n>AURA represents a significant advancement toward more transparent, adaptable, and clinically aligned AI systems.
arXiv Detail & Related papers (2025-07-22T18:24:18Z) - PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models [59.17570021208177]
PyTDC is a machine-learning platform providing streamlined training, evaluation, and inference software for multimodal biological AI models.<n>This paper discusses the components of PyTDC's architecture and, to our knowledge, the first-of-its-kind case study on the introduced single-cell drug-target nomination ML task.
arXiv Detail & Related papers (2025-05-08T18:15:38Z) - A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - Self-eXplainable AI for Medical Image Analysis: A Survey and New Outlooks [9.93411316886105]
Self-eXplainable AI (S-XAI) incorporates explainability directly into the training process of deep learning models.
This survey presents a comprehensive review across various image modalities and clinical applications.
arXiv Detail & Related papers (2024-10-03T09:29:28Z) - XAI meets Biology: A Comprehensive Review of Explainable AI in
Bioinformatics Applications [5.91274133032321]
Explainable AI (XAI) has emerged as a promising solution to enhance the transparency and interpretability of AI models in bioinformatics.
This review provides a comprehensive analysis of various XAI techniques and their applications across various bioinformatics domains.
arXiv Detail & Related papers (2023-12-11T03:08:18Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language Models [72.8965643836841]
We introduce XrayGPT, a novel conversational medical vision-language model.<n>It can analyze and answer open-ended questions about chest radiographs.<n>We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Explainable Deep Learning Methods in Medical Image Classification: A
Survey [0.0]
State-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data.
These models are hardly adopted in clinical, mainly due to their lack of interpretability.
The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models.
arXiv Detail & Related papers (2022-05-10T09:28:14Z) - Explainable artificial intelligence (XAI) in deep learning-based medical
image analysis [3.255042271092803]
A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods.
Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location.
The paper concludes with an outlook of future opportunities for XAI in medical image analysis.
arXiv Detail & Related papers (2021-07-22T20:16:34Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Survey of XAI in digital pathology [3.4591414173342643]
We present a survey on XAI within digital pathology, a medical imaging sub-discipline with particular characteristics and needs.
We give a thorough overview of current XAI techniques of potential relevance for deep learning methods in pathology imaging.
In doing, we incorporate uncertainty estimation methods as an integral part of the XAI landscape.
arXiv Detail & Related papers (2020-08-14T13:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.