Survey of XAI in digital pathology
- URL: http://arxiv.org/abs/2008.06353v1
- Date: Fri, 14 Aug 2020 13:11:54 GMT
- Title: Survey of XAI in digital pathology
- Authors: Milda Pocevi\v{c}i\=ut\.e and Gabriel Eilertsen and Claes Lundstr\"om
- Abstract summary: We present a survey on XAI within digital pathology, a medical imaging sub-discipline with particular characteristics and needs.
We give a thorough overview of current XAI techniques of potential relevance for deep learning methods in pathology imaging.
In doing, we incorporate uncertainty estimation methods as an integral part of the XAI landscape.
- Score: 3.4591414173342643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) has shown great promise for diagnostic imaging
assessments. However, the application of AI to support medical diagnostics in
clinical routine comes with many challenges. The algorithms should have high
prediction accuracy but also be transparent, understandable and reliable. Thus,
explainable artificial intelligence (XAI) is highly relevant for this domain.
We present a survey on XAI within digital pathology, a medical imaging
sub-discipline with particular characteristics and needs. The review includes
several contributions. Firstly, we give a thorough overview of current XAI
techniques of potential relevance for deep learning methods in pathology
imaging, and categorise them from three different aspects. In doing so, we
incorporate uncertainty estimation methods as an integral part of the XAI
landscape. We also connect the technical methods to the specific prerequisites
in digital pathology and present findings to guide future research efforts. The
survey is intended for both technical researchers and medical professionals,
one of the objectives being to establish a common ground for cross-disciplinary
discussions.
Related papers
- Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
Article explores the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer.
Aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications.
arXiv Detail & Related papers (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
The study presents an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer.
The methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations.
A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions.
arXiv Detail & Related papers (2024-04-05T05:00:21Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
Explainable artificial intelligence (XAI) plays an indispensable role in demystifying the decision-making processes of AI.
As they operate as "black boxes," with their reasoning obscured and inaccessible, there's an increased risk of misdiagnosis.
This shift towards transparency is not just beneficial -- it's a critical step towards responsible AI integration in healthcare.
arXiv Detail & Related papers (2024-03-23T02:15:23Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAI refers to the techniques and methods for building AI applications.
Model explainability and interpretability are vital successful deployment of AI models in healthcare practices.
arXiv Detail & Related papers (2023-04-04T05:41:57Z) - Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users [45.62380752173638]
When using medical images for diagnosis, it is important that the images are of high quality.
In telemedicine, a common problem is that the quality issue is only flagged once the patient has left the clinic, meaning they must return in order to have the exam redone.
This paper reports on the development of an AI system for flagging and explaining low-quality medical images in real-time.
arXiv Detail & Related papers (2022-07-06T14:53:26Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
A lack of consensus on how to evaluate explainable AI (XAI) hinders the advancement of the field.
We argue that one way to close the gap is to develop evaluation methods that account for different user requirements.
arXiv Detail & Related papers (2022-06-22T05:17:33Z) - Explainable artificial intelligence (XAI) in deep learning-based medical
image analysis [3.255042271092803]
A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods.
Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location.
The paper concludes with an outlook of future opportunities for XAI in medical image analysis.
arXiv Detail & Related papers (2021-07-22T20:16:34Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
Histopathological images (HIs) are the gold standard for evaluating some types of tumors for cancer diagnosis.
One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems.
arXiv Detail & Related papers (2021-02-07T19:12:32Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.