Estimating Koopman operators with sketching to provably learn large
scale dynamical systems
- URL: http://arxiv.org/abs/2306.04520v2
- Date: Sun, 30 Jul 2023 18:23:19 GMT
- Title: Estimating Koopman operators with sketching to provably learn large
scale dynamical systems
- Authors: Giacomo Meanti, Antoine Chatalic, Vladimir R. Kostic, Pietro Novelli,
Massimiliano Pontil, Lorenzo Rosasco
- Abstract summary: The theory of Koopman operators allows to deploy non-parametric machine learning algorithms to predict and analyze complex dynamical systems.
We boost the efficiency of different kernel-based Koopman operator estimators using random projections.
We establish non error bounds giving a sharp characterization of the trade-offs between statistical learning rates and computational efficiency.
- Score: 37.18243295790146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The theory of Koopman operators allows to deploy non-parametric machine
learning algorithms to predict and analyze complex dynamical systems.
Estimators such as principal component regression (PCR) or reduced rank
regression (RRR) in kernel spaces can be shown to provably learn Koopman
operators from finite empirical observations of the system's time evolution.
Scaling these approaches to very long trajectories is a challenge and requires
introducing suitable approximations to make computations feasible. In this
paper, we boost the efficiency of different kernel-based Koopman operator
estimators using random projections (sketching). We derive, implement and test
the new "sketched" estimators with extensive experiments on synthetic and
large-scale molecular dynamics datasets. Further, we establish non asymptotic
error bounds giving a sharp characterization of the trade-offs between
statistical learning rates and computational efficiency. Our empirical and
theoretical analysis shows that the proposed estimators provide a sound and
efficient way to learn large scale dynamical systems. In particular our
experiments indicate that the proposed estimators retain the same accuracy of
PCR or RRR, while being much faster.
Related papers
- Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics [8.528817025440746]
This paper introduces a novel Gaussian Process (GP) based neural operator for solving parametric differential equations.
We propose a neural operator-embedded kernel'' wherein the GP kernel is formulated in the latent space learned using a neural operator.
Our results highlight the efficacy of this framework in solving complex PDEs while maintaining robustness in uncertainty estimation.
arXiv Detail & Related papers (2024-09-17T08:12:38Z) - Computing large deviation prefactors of stochastic dynamical systems
based on machine learning [4.474127100870242]
We present large deviation theory that characterizes the exponential estimate for rare events of dynamical systems in the limit of weak noise.
We design a neural network framework to compute quasipotential, most probable paths and prefactors based on the decomposition of vector field.
Numerical experiments demonstrate its powerful function in exploring internal mechanism of rare events triggered by weak random fluctuations.
arXiv Detail & Related papers (2023-06-20T09:59:45Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - Koopman Kernel Regression [6.116741319526748]
We show that Koopman operator theory offers a beneficial paradigm for characterizing forecasts via linear time-invariant (LTI) ODEs.
We derive a universal Koopman-invariant kernel reproducing Hilbert space (RKHS) that solely spans transformations into LTI dynamical systems.
Our experiments demonstrate superior forecasting performance compared to Koopman operator and sequential data predictors.
arXiv Detail & Related papers (2023-05-25T16:22:22Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Less is More: Rethinking Few-Shot Learning and Recurrent Neural Nets [2.824895388993495]
We provide theoretical guarantees for reliable learning under the information-theoretic AEP.
We then focus on a highly efficient recurrent neural net (RNN) framework and propose a reduced-entropy algorithm for few-shot learning.
Our experimental results demonstrate significant potential for improving learning models' sample efficiency, generalization, and time complexity.
arXiv Detail & Related papers (2022-09-28T17:33:11Z) - Learning Dynamical Systems via Koopman Operator Regression in
Reproducing Kernel Hilbert Spaces [52.35063796758121]
We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system.
We link the risk with the estimation of the spectral decomposition of the Koopman operator.
Our results suggest RRR might be beneficial over other widely used estimators.
arXiv Detail & Related papers (2022-05-27T14:57:48Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.