AdeptHEQ-FL: Adaptive Homomorphic Encryption for Federated Learning of Hybrid Classical-Quantum Models with Dynamic Layer Sparing
- URL: http://arxiv.org/abs/2507.07316v1
- Date: Wed, 09 Jul 2025 22:29:02 GMT
- Title: AdeptHEQ-FL: Adaptive Homomorphic Encryption for Federated Learning of Hybrid Classical-Quantum Models with Dynamic Layer Sparing
- Authors: Md Abrar Jahin, Taufikur Rahman Fuad, M. F. Mridha, Nafiz Fahad, Md. Jakir Hossen,
- Abstract summary: Federated Learning (FL) faces inherent challenges in balancing model performance, privacy preservation, and communication efficiency.<n>We introduce AdeptHEQ-FL, a unified hybrid classical-quantum FL framework that integrates a CNN-PQC architecture for expressive decentralized learning.<n>We establish formal privacy guarantees, provide convergence analysis, and conduct extensive experiments on the CIFAR-10, SVHN, and Fashion-MNIST datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) faces inherent challenges in balancing model performance, privacy preservation, and communication efficiency, especially in non-IID decentralized environments. Recent approaches either sacrifice formal privacy guarantees, incur high overheads, or overlook quantum-enhanced expressivity. We introduce AdeptHEQ-FL, a unified hybrid classical-quantum FL framework that integrates (i) a hybrid CNN-PQC architecture for expressive decentralized learning, (ii) an adaptive accuracy-weighted aggregation scheme leveraging differentially private validation accuracies, (iii) selective homomorphic encryption (HE) for secure aggregation of sensitive model layers, and (iv) dynamic layer-wise adaptive freezing to minimize communication overhead while preserving quantum adaptability. We establish formal privacy guarantees, provide convergence analysis, and conduct extensive experiments on the CIFAR-10, SVHN, and Fashion-MNIST datasets. AdeptHEQ-FL achieves a $\approx 25.43\%$ and $\approx 14.17\%$ accuracy improvement over Standard-FedQNN and FHE-FedQNN, respectively, on the CIFAR-10 dataset. Additionally, it reduces communication overhead by freezing less important layers, demonstrating the efficiency and practicality of our privacy-preserving, resource-aware design for FL.
Related papers
- FedSKD: Aggregation-free Model-heterogeneous Federated Learning using Multi-dimensional Similarity Knowledge Distillation [7.944298319589845]
Federated learning (FL) enables privacy-preserving collaborative model training without direct data sharing.<n>Model-heterogeneous FL (MHFL) allows clients to train personalized models with heterogeneous architectures tailored to their computational resources and application-specific needs.<n>While peer-to-peer (P2P) FL removes server dependence, it suffers from model drift and knowledge dilution, limiting its effectiveness in heterogeneous settings.<n>We propose FedSKD, a novel MHFL framework that facilitates direct knowledge exchange through round-robin model circulation.
arXiv Detail & Related papers (2025-03-23T05:33:10Z) - Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems [89.35169042718739]
collaborative inference enables end users to leverage powerful deep learning models without exposure of sensitive raw data to cloud servers.<n>Recent studies have revealed that these intermediate features may not sufficiently preserve privacy, as information can be leaked and raw data can be reconstructed via model inversion attacks (MIAs)<n>This work first theoretically proves that the conditional entropy of inputs given intermediate features provides a guaranteed lower bound on the reconstruction mean square error (MSE) under any MIA.<n>Then, we derive a differentiable and solvable measure for bounding this conditional entropy based on the Gaussian mixture estimation and propose a conditional entropy algorithm to enhance the inversion robustness
arXiv Detail & Related papers (2025-03-01T07:15:21Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.<n>We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.<n>Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - HAFLQ: Heterogeneous Adaptive Federated LoRA Fine-tuned LLM with Quantization [55.972018549438964]
Federated fine-tuning of pre-trained Large Language Models (LLMs) enables task-specific adaptation across diverse datasets while preserving privacy.<n>We propose HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization), a novel framework for efficient and scalable fine-tuning of LLMs in heterogeneous environments.<n> Experimental results on the text classification task demonstrate that HAFLQ reduces memory usage by 31%, lowers communication cost by 49%, improves accuracy by 50%, and achieves faster convergence compared to the baseline method.
arXiv Detail & Related papers (2024-11-10T19:59:54Z) - Generalized Policy Learning for Smart Grids: FL TRPO Approach [6.058785372434129]
Federated Learning (FL) can train models on heterogeneous datasets while maintaining data privacy.
This paper introduces a framework that combines FL with a Trust Region Policy Optimization (FL TRPO) aiming to reduce energy-associated emissions and costs.
arXiv Detail & Related papers (2024-03-27T10:47:06Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Federated Deep Equilibrium Learning: Harnessing Compact Global Representations to Enhance Personalization [23.340237814344377]
Federated Learning (FL) has emerged as a groundbreaking distributed learning paradigm enabling clients to train a global model collaboratively without exchanging data.
We introduce FeDEQ, a novel FL framework that incorporates deep equilibrium learning and consensus optimization to harness compact global data representations for efficient personalization.
We show that FeDEQ matches the performance of state-of-the-art personalized FL methods, while significantly reducing communication size by up to 4 times and memory footprint by 1.5 times during training.
arXiv Detail & Related papers (2023-09-27T13:48:12Z) - AQUILA: Communication Efficient Federated Learning with Adaptive
Quantization in Device Selection Strategy [27.443439653087662]
This paper introduces AQUILA (adaptive quantization in device selection strategy), a novel adaptive framework devised to handle these issues.
AQUILA integrates a sophisticated device selection method that prioritizes the quality and usefulness of device updates.
Our experiments demonstrate that AQUILA significantly decreases communication costs compared to existing methods.
arXiv Detail & Related papers (2023-08-01T03:41:47Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Genetic CFL: Optimization of Hyper-Parameters in Clustered Federated
Learning [4.710427287359642]
Federated learning (FL) is a distributed model for deep learning that integrates client-server architecture, edge computing, and real-time intelligence.
FL has the capability of revolutionizing machine learning (ML) but lacks in the practicality of implementation due to technological limitations, communication overhead, non-IID (independent and identically distributed) data, and privacy concerns.
We propose a novel hybrid algorithm, namely genetic clustered FL (Genetic CFL), that clusters edge devices based on the training hyper- parameters and genetically modifies the parameters cluster-wise.
arXiv Detail & Related papers (2021-07-15T10:16:05Z) - Efficient Semantic Image Synthesis via Class-Adaptive Normalization [116.63715955932174]
Class-adaptive normalization (CLADE) is a lightweight but equally-effective variant that is only adaptive to semantic class.
We introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE.
The proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE.
arXiv Detail & Related papers (2020-12-08T18:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.