Corvid: Improving Multimodal Large Language Models Towards Chain-of-Thought Reasoning
- URL: http://arxiv.org/abs/2507.07424v1
- Date: Thu, 10 Jul 2025 04:31:56 GMT
- Title: Corvid: Improving Multimodal Large Language Models Towards Chain-of-Thought Reasoning
- Authors: Jingjing Jiang, Chao Ma, Xurui Song, Hanwang Zhang, Jun Luo,
- Abstract summary: We present Corvid, an MLLM with enhanced chain-of-thought (CoT) reasoning capabilities.<n>To enhance Corvid's CoT reasoning capabilities, we introduce MCoT-Instruct-287K, a high-quality multimodal CoT instruction-following dataset.<n>We propose an effective inference-time scaling strategy that enables Corvid to mitigate over-reasoning and under-reasoning.
- Score: 51.867949053263466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in multimodal large language models (MLLMs) have demonstrated exceptional performance in multimodal perception and understanding. However, leading open-source MLLMs exhibit significant limitations in complex and structured reasoning, particularly in tasks requiring deep reasoning for decision-making and problem-solving. In this work, we present Corvid, an MLLM with enhanced chain-of-thought (CoT) reasoning capabilities. Architecturally, Corvid incorporates a hybrid vision encoder for informative visual representation and a meticulously designed connector (GateMixer) to facilitate cross-modal alignment. To enhance Corvid's CoT reasoning capabilities, we introduce MCoT-Instruct-287K, a high-quality multimodal CoT instruction-following dataset, refined and standardized from diverse public reasoning sources. Leveraging this dataset, we fine-tune Corvid with a two-stage CoT-formatted training approach to progressively enhance its step-by-step reasoning abilities. Furthermore, we propose an effective inference-time scaling strategy that enables Corvid to mitigate over-reasoning and under-reasoning through self-verification. Extensive experiments demonstrate that Corvid outperforms existing o1-like MLLMs and state-of-the-art MLLMs with similar parameter scales, with notable strengths in mathematical reasoning and science problem-solving. Project page: https://mm-vl.github.io/corvid.
Related papers
- Rationale-Enhanced Decoding for Multi-modal Chain-of-Thought [11.538345159297839]
Chain-of-thought (CoT) prompting has been adapted for large vision-language models (LLMs) to enhance multi-modal reasoning.<n>Existing LVLMs often ignore the contents of generated rationales in CoT reasoning.<n>We propose rationale-enhanced decoding (RED), a novel plug-and-play inference-time decoding strategy.
arXiv Detail & Related papers (2025-07-10T12:07:13Z) - Advancing Multimodal Reasoning Capabilities of Multimodal Large Language Models via Visual Perception Reward [87.06604760273372]
We propose Perception-R1, which introduces a novel visual perception reward that explicitly encourages MLLMs to perceive the visual content accurately.<n>We show that Perception-R1 achieves state-of-the-art performance on most benchmarks using only 1,442 training data.
arXiv Detail & Related papers (2025-06-08T16:48:42Z) - VideoRFT: Incentivizing Video Reasoning Capability in MLLMs via Reinforced Fine-Tuning [33.170426237654596]
VIDEORFT is a novel approach to cultivate human-like video reasoning capabilities in MLLMs.<n>It follows the standard two-stage scheme in RFT: supervised fine-tuning (SFT) with chain-of-thought (CoT) annotations, followed by reinforcement learning (RL) to improve generalization.<n>It achieves state-of-the-art performance on six video reasoning benchmarks.
arXiv Detail & Related papers (2025-05-18T14:14:35Z) - Observe-R1: Unlocking Reasoning Abilities of MLLMs with Dynamic Progressive Reinforcement Learning [3.364797975300393]
We present Observe-R1, a novel framework aimed at enhancing the reasoning capabilities of multimodal large language models (MLLMs)<n>We construct the NeuraLadder dataset, which is organized and sampled according to the difficulty and complexity of data samples for RL training.<n>Experiments with the Qwen2.5-VL-3B and Qwen2.5-VL-7B models on 20k samples from the NeuraLadder dataset show that Observe-R1 outperforms a series of larger reasoning models on both reasoning and general benchmarks.
arXiv Detail & Related papers (2025-05-18T14:08:03Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Mentor-KD: Making Small Language Models Better Multi-step Reasoners [15.159415340059388]
We propose Mentor-KD, which effectively distills the multi-step reasoning capability of LLMs to smaller LMs.
We exploit a mentor, intermediate-sized task-specific fine-tuned model, to augment additional CoT annotations.
We conduct extensive experiments and confirm Mentor-KD's effectiveness across various models and complex reasoning tasks.
arXiv Detail & Related papers (2024-10-11T17:53:27Z) - Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders [89.41055673919895]
This study explores the design space for MLLMs using a mixture of vision encoders and resolutions.<n>We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies.<n>The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks.
arXiv Detail & Related papers (2024-08-28T17:59:31Z) - Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales [102.54274021830207]
We introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs.
We filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability.
Our approach also reduces hallucinations owing to its high correlation between images and text.
arXiv Detail & Related papers (2024-04-17T07:20:56Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - Octavius: Mitigating Task Interference in MLLMs via LoRA-MoE [83.00018517368973]
Large Language Models (LLMs) can extend their zero-shot capabilities to multimodal learning through instruction tuning.
negative conflicts and interference may have a worse impact on performance.
We combine the well-known Mixture-of-Experts (MoE) and one of the representative PEFT techniques, i.e., LoRA, designing a novel LLM-based decoder, called LoRA-MoE, for multimodal learning.
arXiv Detail & Related papers (2023-11-05T15:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.