Real-Time Decorrelation-Based Anomaly Detection for Multivariate Time Series
- URL: http://arxiv.org/abs/2507.07559v1
- Date: Thu, 10 Jul 2025 08:56:40 GMT
- Title: Real-Time Decorrelation-Based Anomaly Detection for Multivariate Time Series
- Authors: Amirhossein Sadough, Mahyar Shahsavari, Mark Wijtvliet, Marcel van Gerven,
- Abstract summary: Anomaly detection plays a vital role across a wide range of real-world domains.<n>Demand for real-time AD has surged with the rise of the (Industrial) Internet of Things.<n>We propose DAD, a novel real-time decorrelation-based anomaly detection method.
- Score: 1.4472678336151885
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection (AD) plays a vital role across a wide range of real-world domains by identifying data instances that deviate from expected patterns, potentially signaling critical events such as system failures, fraudulent activities, or rare medical conditions. The demand for real-time AD has surged with the rise of the (Industrial) Internet of Things, where massive volumes of multivariate sensor data must be processed instantaneously. Real-time AD requires methods that not only handle high-dimensional streaming data but also operate in a single-pass manner, without the burden of storing historical instances, thereby ensuring minimal memory usage and fast decision-making. We propose DAD, a novel real-time decorrelation-based anomaly detection method for multivariate time series, based on an online decorrelation learning approach. Unlike traditional proximity-based or reconstruction-based detectors that process entire data or windowed instances, DAD dynamically learns and monitors the correlation structure of data sample by sample in a single pass, enabling efficient and effective detection. To support more realistic benchmarking practices, we also introduce a practical hyperparameter tuning strategy tailored for real-time anomaly detection scenarios. Extensive experiments on widely used benchmark datasets demonstrate that DAD achieves the most consistent and superior performance across diverse anomaly types compared to state-of-the-art methods. Crucially, its robustness to increasing dimensionality makes it particularly well-suited for real-time, high-dimensional data streams. Ultimately, DAD not only strikes an optimal balance between detection efficacy and computational efficiency but also sets a new standard for real-time, memory-constrained anomaly detection.
Related papers
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Anomalous Change Point Detection Using Probabilistic Predictive Coding [13.719066883151623]
We propose a deep learning-based CPD/AD method called Probabilistic Predictive Coding (PPC)
PPC jointly learns to encode sequential data to low dimensional latent space representations and to predict the subsequent data representations as well as the corresponding prediction uncertainties.
We demonstrate the effectiveness and adaptability of our proposed method across synthetic time series experiments, image data, and real-world magnetic resonance spectroscopic imaging data.
arXiv Detail & Related papers (2024-05-24T17:17:34Z) - Revisiting VAE for Unsupervised Time Series Anomaly Detection: A
Frequency Perspective [40.21603048003118]
Variational Autoencoders (VAEs) have gained popularity in recent decades due to their superior de-noising capabilities.
FCVAE exploits an innovative approach to concurrently integrate both the global and local frequency features into the condition of Conditional Variational Autoencoder (CVAE)
Our approach has been evaluated on public datasets and a large-scale cloud system, and the results demonstrate that it outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-02-05T09:06:57Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
We propose a novel anomaly detection framework named ImDiffusion.
ImDiffusion combines time series imputation and diffusion models to achieve accurate and robust anomaly detection.
We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2023-07-03T04:57:40Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Time-Series Anomaly Detection with Implicit Neural Representation [0.38073142980733]
Implicit Neural Representation-based Anomaly Detection (INRAD) is proposed.
We train a simple multi-layer perceptron that takes time as input and outputs corresponding values at that time.
Then we utilize the representation error as an anomaly score for detecting anomalies.
arXiv Detail & Related papers (2022-01-28T06:17:24Z) - TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data [13.864161788250856]
TranAD is a deep transformer network based anomaly detection and diagnosis model.
It uses attention-based sequence encoders to swiftly perform inference with the knowledge of the broader temporal trends in the data.
TranAD can outperform state-of-the-art baseline methods in detection and diagnosis performance with data and time-efficient training.
arXiv Detail & Related papers (2022-01-18T19:41:29Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.