TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data
- URL: http://arxiv.org/abs/2201.07284v1
- Date: Tue, 18 Jan 2022 19:41:29 GMT
- Title: TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data
- Authors: Shreshth Tuli, Giuliano Casale and Nicholas R. Jennings
- Abstract summary: TranAD is a deep transformer network based anomaly detection and diagnosis model.
It uses attention-based sequence encoders to swiftly perform inference with the knowledge of the broader temporal trends in the data.
TranAD can outperform state-of-the-art baseline methods in detection and diagnosis performance with data and time-efficient training.
- Score: 13.864161788250856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient anomaly detection and diagnosis in multivariate time-series data is
of great importance for modern industrial applications. However, building a
system that is able to quickly and accurately pinpoint anomalous observations
is a challenging problem. This is due to the lack of anomaly labels, high data
volatility and the demands of ultra-low inference times in modern applications.
Despite the recent developments of deep learning approaches for anomaly
detection, only a few of them can address all of these challenges. In this
paper, we propose TranAD, a deep transformer network based anomaly detection
and diagnosis model which uses attention-based sequence encoders to swiftly
perform inference with the knowledge of the broader temporal trends in the
data. TranAD uses focus score-based self-conditioning to enable robust
multi-modal feature extraction and adversarial training to gain stability.
Additionally, model-agnostic meta learning (MAML) allows us to train the model
using limited data. Extensive empirical studies on six publicly available
datasets demonstrate that TranAD can outperform state-of-the-art baseline
methods in detection and diagnosis performance with data and time-efficient
training. Specifically, TranAD increases F1 scores by up to 17%, reducing
training times by up to 99% compared to the baselines.
Related papers
- See it, Think it, Sorted: Large Multimodal Models are Few-shot Time Series Anomaly Analyzers [23.701716999879636]
Time series anomaly detection (TSAD) is becoming increasingly vital due to the rapid growth of time series data.
We introduce a pioneering framework called the Time Series Anomaly Multimodal Analyzer (TAMA) to enhance both the detection and interpretation of anomalies.
arXiv Detail & Related papers (2024-11-04T10:28:41Z) - TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
We propose a temporal variational autoencoder (TeVAE) that can detect anomalies with minimal false positives when trained on unlabelled data.
When properly configured, TeVAE flags anomalies only 6% of the time wrongly and detects 65% of anomalies present.
arXiv Detail & Related papers (2024-07-09T13:32:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - DTAAD: Dual Tcn-Attention Networks for Anomaly Detection in Multivariate Time Series Data [0.0]
We propose an anomaly detection and diagnosis model, DTAAD, based on Transformer and Dual Temporal Convolutional Network (TCN)
scaling methods and feedback mechanisms are introduced to improve prediction accuracy and expand correlation differences.
Our experiments on seven public datasets validate that DTAAD exceeds the majority of currently advanced baseline methods in both detection and diagnostic performance.
arXiv Detail & Related papers (2023-02-17T06:59:45Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.