NexViTAD: Few-shot Unsupervised Cross-Domain Defect Detection via Vision Foundation Models and Multi-Task Learning
- URL: http://arxiv.org/abs/2507.07579v1
- Date: Thu, 10 Jul 2025 09:29:26 GMT
- Title: NexViTAD: Few-shot Unsupervised Cross-Domain Defect Detection via Vision Foundation Models and Multi-Task Learning
- Authors: Tianwei Mu, Feiyu Duan, Bo Zhou, Dan Xue, Manhong Huang,
- Abstract summary: NexViTAD is a cross-domain anomaly detection framework based on vision foundation models.<n>It addresses domain-shift challenges in industrial anomaly detection through innovative shared subspace projection mechanisms.<n>It delivers state-of-the-art performance with an AUC of 97.5%, AP of 70.4%, and PRO of 95.2% in the target domains.
- Score: 1.7603474309877931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel few-shot cross-domain anomaly detection framework, Nexus Vision Transformer for Anomaly Detection (NexViTAD), based on vision foundation models, which effectively addresses domain-shift challenges in industrial anomaly detection through innovative shared subspace projection mechanisms and multi-task learning (MTL) module. The main innovations include: (1) a hierarchical adapter module that adaptively fuses complementary features from Hiera and DINO-v2 pre-trained models, constructing more robust feature representations; (2) a shared subspace projection strategy that enables effective cross-domain knowledge transfer through bottleneck dimension constraints and skip connection mechanisms; (3) a MTL Decoder architecture supports simultaneous processing of multiple source domains, significantly enhancing model generalization capabilities; (4) an anomaly score inference method based on Sinkhorn-K-means clustering, combined with Gaussian filtering and adaptive threshold processing for precise pixel level. Valuated on the MVTec AD dataset, NexViTAD delivers state-of-the-art performance with an AUC of 97.5%, AP of 70.4%, and PRO of 95.2% in the target domains, surpassing other recent models, marking a transformative advance in cross-domain defect detection.
Related papers
- Dual-Branch Residual Network for Cross-Domain Few-Shot Hyperspectral Image Classification with Refined Prototype [17.404026075350707]
Convolutional neural networks (CNNs) are effective for hyperspectral image (HSI) classification.<n>Their 3D convolutional structures introduce high computational costs and limited generalization in few-shot scenarios.<n>This letter proposes a dual-branch residual network that integrates spatial and spectral features via parallel branches.
arXiv Detail & Related papers (2025-04-27T02:04:49Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN)<n>We propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations.<n>Our proposed algorithm achieves SOTA performance among binary ViT methods.
arXiv Detail & Related papers (2025-03-04T08:35:01Z) - Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.<n>Existing approaches focus on single-source domain generalization to unseen target domains.<n>We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - Dispensed Transformer Network for Unsupervised Domain Adaptation [21.256375606219073]
A novel unsupervised domain adaptation (UDA) method named dispensed Transformer network (DTNet) is introduced in this paper.
Our proposed network achieves the best performance in comparison with several state-of-the-art techniques.
arXiv Detail & Related papers (2021-10-28T08:27:44Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Adversarial Bipartite Graph Learning for Video Domain Adaptation [50.68420708387015]
Domain adaptation techniques, which focus on adapting models between distributionally different domains, are rarely explored in the video recognition area.
Recent works on visual domain adaptation which leverage adversarial learning to unify the source and target video representations are not highly effective on the videos.
This paper proposes an Adversarial Bipartite Graph (ABG) learning framework which directly models the source-target interactions.
arXiv Detail & Related papers (2020-07-31T03:48:41Z) - Contradictory Structure Learning for Semi-supervised Domain Adaptation [67.89665267469053]
Current adversarial adaptation methods attempt to align the cross-domain features.
Two challenges remain unsolved: 1) the conditional distribution mismatch and 2) the bias of the decision boundary towards the source domain.
We propose a novel framework for semi-supervised domain adaptation by unifying the learning of opposite structures.
arXiv Detail & Related papers (2020-02-06T22:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.