論文の概要: GuardVal: Dynamic Large Language Model Jailbreak Evaluation for Comprehensive Safety Testing
- arxiv url: http://arxiv.org/abs/2507.07735v1
- Date: Thu, 10 Jul 2025 13:15:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.410907
- Title: GuardVal: Dynamic Large Language Model Jailbreak Evaluation for Comprehensive Safety Testing
- Title(参考訳): GuardVal: 全体的な安全性テストのための動的大規模言語モデルジェイルブレイク評価
- Authors: Peiyan Zhang, Haibo Jin, Liying Kang, Haohan Wang,
- Abstract要約: 大規模言語モデル(LLMs)におけるジェイルブレイク攻撃の重大な脆弱性
本稿では,保護者LSMの状態に基づいてジェイルブレイクプロンプトを生成・改善する新しい評価プロトコルであるGuardValを紹介する。
このプロトコルを10の安全領域にわたるMistral-7bからGPT-4まで多様なモデルに適用する。
- 参考スコア(独自算出の注目度): 13.267217024192535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Jailbreak attacks reveal critical vulnerabilities in Large Language Models (LLMs) by causing them to generate harmful or unethical content. Evaluating these threats is particularly challenging due to the evolving nature of LLMs and the sophistication required in effectively probing their vulnerabilities. Current benchmarks and evaluation methods struggle to fully address these challenges, leaving gaps in the assessment of LLM vulnerabilities. In this paper, we review existing jailbreak evaluation practices and identify three assumed desiderata for an effective jailbreak evaluation protocol. To address these challenges, we introduce GuardVal, a new evaluation protocol that dynamically generates and refines jailbreak prompts based on the defender LLM's state, providing a more accurate assessment of defender LLMs' capacity to handle safety-critical situations. Moreover, we propose a new optimization method that prevents stagnation during prompt refinement, ensuring the generation of increasingly effective jailbreak prompts that expose deeper weaknesses in the defender LLMs. We apply this protocol to a diverse set of models, from Mistral-7b to GPT-4, across 10 safety domains. Our findings highlight distinct behavioral patterns among the models, offering a comprehensive view of their robustness. Furthermore, our evaluation process deepens the understanding of LLM behavior, leading to insights that can inform future research and drive the development of more secure models.
- Abstract(参考訳): ジェイルブレイク攻撃は、有害または非倫理的なコンテンツを生成することによって、Large Language Models(LLM)の重大な脆弱性を明らかにする。
これらの脅威を評価することは、LSMの進化する性質と、その脆弱性を効果的に証明するのに必要とされる洗練のために特に困難である。
現在のベンチマークと評価手法は、これらの課題を完全に解決するのに苦労し、LLM脆弱性の評価にギャップを残している。
本稿では,既存のジェイルブレイク評価手法を概観し,有効なジェイルブレイク評価プロトコルとして3つのデシラタを推定する。
これらの課題に対処するために、我々は、ディフェンダーLSMの状態に基づいてジェイルブレイクプロンプトを動的に生成し、洗練する新しい評価プロトコルであるGuardValを導入し、安全クリティカルな状況に対処するためのディフェンダーLSMの能力をより正確に評価する。
さらに,迅速な改良の際の停滞を防止し,より効果的なジェイルブレイクプロンプトの生成を確実にし,ディフェンダーLSMのより深い弱点を露呈する新たな最適化手法を提案する。
このプロトコルを10の安全領域にわたるMistral-7bからGPT-4まで多様なモデルに適用する。
本研究は, モデル間に異なる行動パターンを呈し, その頑健さを包括的に把握した。
さらに,我々の評価プロセスはLCMの行動の理解を深め,将来の研究に情報を提供し,より安全なモデルの開発を促進するための洞察をもたらす。
関連論文リスト
- PandaGuard: Systematic Evaluation of LLM Safety against Jailbreaking Attacks [7.252454104194306]
大きな言語モデル(LLM)は目覚ましい能力を達成したが、ジェイルブレイクとして知られる敵のプロンプトに弱いままである。
LLMの安全性研究への取り組みが増えているにもかかわらず、既存の評価はしばしば断片化され、単独の攻撃や防御技術に焦点が当てられている。
PandaGuardはLLMジェイルブレイクの安全性を攻撃者、ディフェンダー、および審査員で構成されるマルチエージェントシステムとしてモデル化する、統一的でモジュール化されたフレームワークである。
論文 参考訳(メタデータ) (2025-05-20T03:14:57Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
Vision Large Language Models(VLLMs)のジェイルブレイク攻撃に対する脆弱性は、驚くにあたらない。
これらの攻撃に対する最近の防御機構は、ベンチマーク評価においてほぼ飽和状態に達している。
論文 参考訳(メタデータ) (2024-11-13T07:57:19Z) - PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach [25.31933913962953]
大規模言語モデル(LLM)が広く普及し、セキュリティに対する懸念が高まっている。
そこで我々は,迷路から逃れるネズミのゲームに触発された新しいブラックボックスジェイルブレイク手法PathSeekerを紹介した。
提案手法は,13の商用およびオープンソース LLM を対象としたテストにおいて,最先端の攻撃技術として5つの性能を発揮した。
論文 参考訳(メタデータ) (2024-09-21T15:36:26Z) - Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks [23.782566331783134]
我々は3つのカテゴリ、61の特定の有害なカテゴリからの1525の質問、13の人気のあるLCMの10の最先端のジェイルブレイク戦略に焦点を当てた。
攻撃成功率(ASR)、毒性スコア(Toxicity Score)、Fluency(Fluency)、Token Length(Token Length)、文法エラー(Grammatical Errors)などの多次元指標を用いて、ジェイルブレイク下でのLLMのアウトプットを徹底的に評価する。
モデル,攻撃戦略,有害コンテンツの種類,および評価指標間の相関関係について検討し,多面的評価フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-18T01:58:03Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
大規模言語モデル(LLM)は、ユーザがクエリを入力し、LLMが回答を生成する、顕著な生成AIツールになりつつある。
害と誤用を減らすため、人間のフィードバックからの強化学習のような高度な訓練技術を用いて、これらのLLMを人間の価値に合わせる努力がなされている。
近年の研究では、組込み安全ガードレールを転覆させようとする敵のジェイルブレイクの試みに対するLLMの脆弱性を強調している。
本稿では,脱獄を検知するGradient Cuffという手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T03:29:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。