論文の概要: The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense
- arxiv url: http://arxiv.org/abs/2411.08410v2
- Date: Thu, 06 Mar 2025 01:45:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:06:36.181023
- Title: The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense
- Title(参考訳): VLLMの安全パラドックス: 脱獄と防犯の2つの理由
- Authors: Yangyang Guo, Fangkai Jiao, Liqiang Nie, Mohan Kankanhalli,
- Abstract要約: Vision Large Language Models(VLLMs)のジェイルブレイク攻撃に対する脆弱性は、驚くにあたらない。
これらの攻撃に対する最近の防御機構は、ベンチマーク評価においてほぼ飽和状態に達している。
- 参考スコア(独自算出の注目度): 56.32083100401117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The vulnerability of Vision Large Language Models (VLLMs) to jailbreak attacks appears as no surprise. However, recent defense mechanisms against these attacks have reached near-saturation performance on benchmark evaluations, often with minimal effort. This \emph{dual high performance} in both attack and defense raises a fundamental and perplexing paradox. To gain a deep understanding of this issue and thus further help strengthen the trustworthiness of VLLMs, this paper makes three key contributions: i) One tentative explanation for VLLMs being prone to jailbreak attacks--\textbf{inclusion of vision inputs}, as well as its in-depth analysis. ii) The recognition of a largely ignored problem in existing defense mechanisms--\textbf{over-prudence}. The problem causes these defense methods to exhibit unintended abstention, even in the presence of benign inputs, thereby undermining their reliability in faithfully defending against attacks. iii) A simple safety-aware method--\textbf{LLM-Pipeline}. Our method repurposes the more advanced guardrails of LLMs on the shelf, serving as an effective alternative detector prior to VLLM response. Last but not least, we find that the two representative evaluation methods for jailbreak often exhibit chance agreement. This limitation makes it potentially misleading when evaluating attack strategies or defense mechanisms. We believe the findings from this paper offer useful insights to rethink the foundational development of VLLM safety with respect to benchmark datasets, defense strategies, and evaluation methods.
- Abstract(参考訳): Vision Large Language Models(VLLMs)のジェイルブレイク攻撃に対する脆弱性は、驚くにあたらない。
しかし、これらの攻撃に対する最近の防御機構は、しばしば最小限の努力で、ベンチマーク評価においてほぼ飽和性能に達している。
この攻撃と防御の両方における「emph{dual High Performance}」は、根本的な、そして複雑なパラドックスを引き起こす。
この問題を深く理解し,VLLMの信頼性を高めるために,本稿では3つの重要な貢献を行う。
i) VLLMsがジェイルブレイク攻撃を起こしやすいという仮説明の1つ---\textbf{inclusion of vision input} 及びその詳細な分析。
二 既存の防衛機構におけるほとんど無視された問題の認識−--\textbf{over-prudence}
この問題は、良心的な入力があったとしても、これらの防御方法が意図しない棄権を示し、攻撃に対して忠実に防御する彼らの信頼性を損なう原因となる。
三 簡単な安全を意識した方法--\textbf{LLM-Pipeline}
VLLMの応答に先立って, シェルフ上のLLMのより高度なガードレールを再利用し, 有効な代替検出器として機能する。
最後に、ジェイルブレイクの2つの代表的な評価方法が、しばしばチャンス合意を示すことを発見した。
この制限は、攻撃戦略や防御機構を評価する際に誤解を招く可能性がある。
本稿では,ベンチマークデータセット,防衛戦略,評価手法に関して,VLLMの安全性の基礎的発展を再考するための有用な知見を提供する。
関連論文リスト
- DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification [18.006622965818856]
我々は,LDMのジェイルブレイク攻撃に対する防御能力を向上する,微調整不要な防御手法であるDETAMを紹介する。
具体的には,ジェイルブレイク攻撃に敏感なアテンションヘッドを識別するために,防衛の成功と失敗の間のアテンションスコアの差を分析した。
推論中、攻撃トークンからの干渉を最小限に抑え、ユーザーの中核的な意図を強調するために注意を向ける。
論文 参考訳(メタデータ) (2025-04-18T09:02:12Z) - Tit-for-Tat: Safeguarding Large Vision-Language Models Against Jailbreak Attacks via Adversarial Defense [90.71884758066042]
大きな視覚言語モデル(LVLM)は、視覚入力による悪意のある攻撃に対する感受性という、ユニークな脆弱性を導入している。
本稿では,脆弱性発生源からアクティブ防衛機構へ視覚空間を変換するための新しい手法であるESIIIを提案する。
論文 参考訳(メタデータ) (2025-03-14T17:39:45Z) - SafeInt: Shielding Large Language Models from Jailbreak Attacks via Safety-Aware Representation Intervention [14.509085965856643]
Jailbreak攻撃は、望ましくない振る舞いを引き起こすために、大きな言語モデル(LLM)の脆弱性を利用する。
以前の防御は、しばしば効果と効率の両方を同時に達成できない。
セーフインベンション(SafeIntervention, セーフインベンション)は, 安全を意識した表現介入を通じて, LLMをジェイルブレイク攻撃から保護する新しい防御手法である。
論文 参考訳(メタデータ) (2025-02-21T17:12:35Z) - You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense [34.023473699165315]
脱獄防御戦略によるLCMの実用性低下, 安全性向上, 過大に安全なエスカレーションについて検討した。
主流のジェイルブレイク防御は、安全性とパフォーマンスの両方を同時に確保できないことに気付きました。
論文 参考訳(メタデータ) (2025-01-21T15:24:29Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
大規模言語モデル(LLM)におけるジェイルブレークは、LLMを騙して有害なテキストを生成するというセキュリティ上の問題である。
我々は7つの異なるジェイルブレイク法を詳細に分析し、不一致が不十分な観察サンプルから生じることを確認した。
安全境界内でのアクティベーションを適応的に制限する「textbfActivation Boundary Defense (ABD)」という新しい防衛法を提案する。
論文 参考訳(メタデータ) (2024-12-22T14:18:39Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
隠れ状態フィルタ(HSF)に基づくジェイルブレイク攻撃防御戦略を提案する。
HSFは、推論プロセスが始まる前に、モデルが相手の入力をプリエンプティブに識別し、拒否することを可能にする。
不正なユーザクエリに対する応答を最小限に抑えながら、Jailbreak攻撃の成功率を大幅に低下させる。
論文 参考訳(メタデータ) (2024-08-31T06:50:07Z) - Jailbreak Attacks and Defenses Against Large Language Models: A Survey [22.392989536664288]
大規模言語モデル(LLM)は、様々なテキスト生成タスクにおいて例外的に機能している。
ジェイルブレイク」は、利用方針や社会に対する悪意ある反応をモデルに誘導する。
本稿では,ジェイルブレイク攻撃と防衛方法の包括的かつ詳細な分類法を提案する。
論文 参考訳(メタデータ) (2024-07-05T06:57:30Z) - Raccoon: Prompt Extraction Benchmark of LLM-Integrated Applications [8.51254190797079]
本稿では,抽出攻撃に対するモデルの感受性を包括的に評価するRacoonベンチマークを提案する。
本手法は,無防備シナリオと防御シナリオの両方でモデルを評価する。
本研究は,防衛の欠如を契機に,盗難を助長するための普遍的感受性を強調し,保護時に顕著なレジリエンスを示すOpenAIモデルを示した。
論文 参考訳(メタデータ) (2024-06-10T18:57:22Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
本稿では,ジェイルブレイク攻撃と防衛技術における依存関係の体系的解析について述べる。
包括的な、自動化された、論理的な3つのフレームワークを提案します。
このアンサンブル・ジェイルブレイク・アタックと防衛の枠組みは,既存の研究を著しく上回る結果となった。
論文 参考訳(メタデータ) (2024-06-06T07:24:41Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - A Comprehensive Study of Jailbreak Attack versus Defense for Large Language Models [20.40158210837289]
Vicuna, LLama, GPT-3.5 Turboの3つの異なる言語モデルに適用した9つの攻撃手法と7つの防御手法について検討した。
以上の結果から,既存のホワイトボックス攻撃は普遍的手法に比べて性能が低く,入力に特別なトークンを含むと,攻撃成功の可能性に大きな影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2024-02-21T01:26:39Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization [98.18718484152595]
本研究は,学習段階と推論段階の両方において,目標の優先順位付けを統合することで,支援と安全性の確保という目標との本質的な対立に対処することを提案する。
我々の研究は、脱獄攻撃と防衛の理解に寄与し、LLMの能力と安全性の関係に光を当てている。
論文 参考訳(メタデータ) (2023-11-15T16:42:29Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z) - Jailbroken: How Does LLM Safety Training Fail? [92.8748773632051]
ChatGPTの初期リリースに対する"jailbreak"攻撃は、望ましくない振る舞いを引き起こす。
このような攻撃がなぜ成功し、どのように発生できるかを考察する。
障害モードを利用した新たな攻撃は、安全でない要求の収集において、すべてのプロンプトで成功します。
論文 参考訳(メタデータ) (2023-07-05T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。