When Large Language Models Meet Law: Dual-Lens Taxonomy, Technical Advances, and Ethical Governance
- URL: http://arxiv.org/abs/2507.07748v1
- Date: Thu, 10 Jul 2025 13:26:34 GMT
- Title: When Large Language Models Meet Law: Dual-Lens Taxonomy, Technical Advances, and Ethical Governance
- Authors: Peizhang Shao, Linrui Xu, Jinxi Wang, Wei Zhou, Xingyu Wu,
- Abstract summary: This paper establishes the first comprehensive review of Large Language Models (LLMs)<n> Transformer-based LLMs exhibit emergent capabilities such as contextual reasoning and generative argumentation.<n>This review proposes a novel taxonomy that maps legal roles to computationally subtasks and implements the Toulmin argumentation framework.
- Score: 7.743029842436036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper establishes the first comprehensive review of Large Language Models (LLMs) applied within the legal domain. It pioneers an innovative dual lens taxonomy that integrates legal reasoning frameworks and professional ontologies to systematically unify historical research and contemporary breakthroughs. Transformer-based LLMs, which exhibit emergent capabilities such as contextual reasoning and generative argumentation, surmount traditional limitations by dynamically capturing legal semantics and unifying evidence reasoning. Significant progress is documented in task generalization, reasoning formalization, workflow integration, and addressing core challenges in text processing, knowledge integration, and evaluation rigor via technical innovations like sparse attention mechanisms and mixture-of-experts architectures. However, widespread adoption of LLM introduces critical challenges: hallucination, explainability deficits, jurisdictional adaptation difficulties, and ethical asymmetry. This review proposes a novel taxonomy that maps legal roles to NLP subtasks and computationally implements the Toulmin argumentation framework, thus systematizing advances in reasoning, retrieval, prediction, and dispute resolution. It identifies key frontiers including low-resource systems, multimodal evidence integration, and dynamic rebuttal handling. Ultimately, this work provides both a technical roadmap for researchers and a conceptual framework for practitioners navigating the algorithmic future, laying a robust foundation for the next era of legal artificial intelligence. We have created a GitHub repository to index the relevant papers: https://github.com/Kilimajaro/LLMs_Meet_Law.
Related papers
- An Integrated Framework of Prompt Engineering and Multidimensional Knowledge Graphs for Legal Dispute Analysis [10.003390941988386]
This research proposes an enhanced framework integrating prompt engineering with multidimensional knowledge graphs.<n>The framework introduces a three-stage hierarchical prompt structure comprising task definition, knowledge background, and reasoning guidance.<n>Four complementary methods enable precise legal concept retrieval.
arXiv Detail & Related papers (2025-07-10T16:22:41Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - Aplicação de Large Language Models na Análise e Síntese de Documentos Jurídicos: Uma Revisão de Literatura [0.0]
Large Language Models (LLMs) have been increasingly used to optimize the analysis and synthesis of legal documents.<n>This study aims to conduct a systematic literature review to identify the state of the art in prompt engineering applied to LLMs in the legal context.
arXiv Detail & Related papers (2025-04-01T12:34:00Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Bridging Legal Knowledge and AI: Retrieval-Augmented Generation with Vector Stores, Knowledge Graphs, and Hierarchical Non-negative Matrix Factorization [6.0045906216050815]
Agentic Generative AI, powered by Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG), Knowledge Graphs (KGs), and Vector Stores (VSs)<n>This technology excels at inferring relationships within vast unstructured or semi-structured datasets.<n>We introduce a generative AI system that integrates RAG, VS, and KG, constructed via Non-Negative Matrix Factorization (NMF)
arXiv Detail & Related papers (2025-02-27T18:35:39Z) - Elevating Legal LLM Responses: Harnessing Trainable Logical Structures and Semantic Knowledge with Legal Reasoning [19.477062052536887]
We propose the Logical-Semantic Integration Model (LSIM), a supervised framework that bridges semantic and logical coherence.<n>LSIM comprises three components: reinforcement learning predicts a structured fact-rule chain for each question, a trainable Deep Structured Semantic Model (DSSM) retrieves the most relevant candidate questions and in-answer learning generates the final answer.<n>Our experiments on a real-world legal dataset QA-validated through both automated metrics and human evaluation-demonstrate that LSIM significantly enhances accuracy and reliability compared to existing methods.
arXiv Detail & Related papers (2025-02-11T19:33:07Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
High-stakes decision-making tasks in fields such as medical, legal and finance require a level of precision, comprehensiveness, and logical consistency.
We have developed a neuro-symbolic AI platform to tackle these problems.
The platform integrates fine-tuned LLMs for knowledge extraction and alignment with a robust symbolic reasoning engine.
arXiv Detail & Related papers (2024-06-26T00:00:45Z) - Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
We show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture.
With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner.
For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.
arXiv Detail & Related papers (2024-02-23T16:50:07Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Enhancing Pre-Trained Language Models with Sentence Position Embeddings
for Rhetorical Roles Recognition in Legal Opinions [0.16385815610837165]
The size of legal opinions continues to grow, making it increasingly challenging to develop a model that can accurately predict the rhetorical roles of legal opinions.
We propose a novel model architecture for automatically predicting rhetorical roles using pre-trained language models (PLMs) enhanced with knowledge of sentence position information.
Based on an annotated corpus from the LegalEval@SemEval2023 competition, we demonstrate that our approach requires fewer parameters, resulting in lower computational costs.
arXiv Detail & Related papers (2023-10-08T20:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.