An Integrated Framework of Prompt Engineering and Multidimensional Knowledge Graphs for Legal Dispute Analysis
- URL: http://arxiv.org/abs/2507.07893v1
- Date: Thu, 10 Jul 2025 16:22:41 GMT
- Title: An Integrated Framework of Prompt Engineering and Multidimensional Knowledge Graphs for Legal Dispute Analysis
- Authors: Mingda Zhang, Na Zhao, Jianglong Qing, Qing xu, Kaiwen Pan, Ting luo,
- Abstract summary: This research proposes an enhanced framework integrating prompt engineering with multidimensional knowledge graphs.<n>The framework introduces a three-stage hierarchical prompt structure comprising task definition, knowledge background, and reasoning guidance.<n>Four complementary methods enable precise legal concept retrieval.
- Score: 10.003390941988386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of artificial intelligence has positioned large language models as fundamental components of intelligent legal systems. However, these models face significant limitations in legal dispute analysis, including insufficient legal knowledge representation, limited concept understanding, and reasoning deficiencies. This research proposes an enhanced framework integrating prompt engineering with multidimensional knowledge graphs. The framework introduces a three-stage hierarchical prompt structure comprising task definition, knowledge background, and reasoning guidance, supplemented by legal-specific reasoning templates and dynamic optimization mechanisms. A three-layer knowledge graph architecture is constructed with legal classification ontology, representation, and instance layers. Four complementary methods enable precise legal concept retrieval: direct legal norm code matching, domain-specific semantic vector similarity, ontology-based path reasoning, and specialized lexical segmentation. These components integrate with web search technology to establish a knowledge-enhanced framework for legal decision-making. Experimental results demonstrate significant performance improvements in legal dispute analysis, enabling accurate legal application analysis for complex cases while exhibiting nuanced understanding of judicial decision-making logic, providing a novel technical approach for implementing intelligent legal assistance systems.
Related papers
- When Large Language Models Meet Law: Dual-Lens Taxonomy, Technical Advances, and Ethical Governance [7.743029842436036]
This paper establishes the first comprehensive review of Large Language Models (LLMs)<n> Transformer-based LLMs exhibit emergent capabilities such as contextual reasoning and generative argumentation.<n>This review proposes a novel taxonomy that maps legal roles to computationally subtasks and implements the Toulmin argumentation framework.
arXiv Detail & Related papers (2025-07-10T13:26:34Z) - A Data Science Approach to Calcutta High Court Judgments: An Efficient LLM and RAG-powered Framework for Summarization and Similar Cases Retrieval [2.359291431338925]
This research presents a framework to analyze Calcutta High Court verdicts.<n>By fine-tuning the Pegasus model, we achieve significant improvements in the summarization of legal cases.<n>The RAG-powered framework efficiently retrieves similar cases in response to user queries, offering thorough overviews and summaries.
arXiv Detail & Related papers (2025-06-28T20:24:34Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - RLJP: Legal Judgment Prediction via First-Order Logic Rule-enhanced with Large Language Models [58.69183479148083]
Legal Judgment Prediction (LJP) is a pivotal task in legal AI.<n>Existing LJP models integrate judicial precedents and legal knowledge for high performance.<n>But they neglect legal reasoning logic, a critical component of legal judgments requiring rigorous logical analysis.<n>This paper proposes a rule-enhanced legal judgment prediction framework based on first-order logic (FOL) formalism and comparative learning (CL)
arXiv Detail & Related papers (2025-05-27T14:50:21Z) - KERAIA: An Adaptive and Explainable Framework for Dynamic Knowledge Representation and Reasoning [46.85451489222176]
KERAIA is a novel framework and software platform for symbolic knowledge engineering.<n>It addresses the persistent challenges of representing, reasoning with, and executing knowledge in dynamic, complex, and context-sensitive environments.
arXiv Detail & Related papers (2025-05-07T10:56:05Z) - Bridging Legal Knowledge and AI: Retrieval-Augmented Generation with Vector Stores, Knowledge Graphs, and Hierarchical Non-negative Matrix Factorization [6.0045906216050815]
Agentic Generative AI, powered by Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG), Knowledge Graphs (KGs), and Vector Stores (VSs)<n>This technology excels at inferring relationships within vast unstructured or semi-structured datasets.<n>We introduce a generative AI system that integrates RAG, VS, and KG, constructed via Non-Negative Matrix Factorization (NMF)
arXiv Detail & Related papers (2025-02-27T18:35:39Z) - Elevating Legal LLM Responses: Harnessing Trainable Logical Structures and Semantic Knowledge with Legal Reasoning [19.477062052536887]
We propose the Logical-Semantic Integration Model (LSIM), a supervised framework that bridges semantic and logical coherence.<n>LSIM comprises three components: reinforcement learning predicts a structured fact-rule chain for each question, a trainable Deep Structured Semantic Model (DSSM) retrieves the most relevant candidate questions and in-answer learning generates the final answer.<n>Our experiments on a real-world legal dataset QA-validated through both automated metrics and human evaluation-demonstrate that LSIM significantly enhances accuracy and reliability compared to existing methods.
arXiv Detail & Related papers (2025-02-11T19:33:07Z) - Knowledge Graphs Construction from Criminal Court Appeals: Insights from the French Cassation Court [49.1574468325115]
This paper presents a framework for constructing knowledge graphs from appeals to the French Cassation Court.<n>The framework includes a domain-specific ontology and a derived dataset, offering a foundation for structured legal data representation and analysis.
arXiv Detail & Related papers (2025-01-24T15:38:32Z) - LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs [103.0226977561914]
We propose a comprehensive framework for advancing step-by-step visual reasoning in large language models.<n>We introduce a visual reasoning benchmark specifically designed to evaluate multi-step reasoning tasks.<n>Second, we propose a novel metric that assesses visual reasoning quality at the granularity of individual steps.<n>Third, we present a new multimodal visual reasoning model, named LlamaV-o1, trained using a multi-step curriculum learning approach.
arXiv Detail & Related papers (2025-01-10T18:59:51Z) - A Comprehensive Framework for Reliable Legal AI: Combining Specialized Expert Systems and Adaptive Refinement [0.0]
Article proposes a novel framework combining expert systems with a knowledge-based architecture to improve the precision and contextual relevance of AI-driven legal services.<n>This framework utilizes specialized modules, each focusing on specific legal areas, and incorporates structured operational guidelines to enhance decision-making.<n>The proposed approach demonstrates significant improvements over existing AI models, showcasing enhanced performance in legal tasks and offering a scalable solution to provide more accessible and affordable legal services.
arXiv Detail & Related papers (2024-12-29T14:00:11Z) - The Use of Readability Metrics in Legal Text: A Systematic Literature Review [3.439579933384111]
Linguistic complexity is an important contributor to difficulties experienced by readers.
Document readability metrics have been developed to measure document readability.
Not all legal domains are well represented in terms of readability metrics.
arXiv Detail & Related papers (2024-11-14T15:04:17Z) - Networks of Networks: Complexity Class Principles Applied to Compound AI Systems Design [63.24275274981911]
Compound AI Systems consisting of many language model inference calls are increasingly employed.
In this work, we construct systems, which we call Networks of Networks (NoNs) organized around the distinction between generating a proposed answer and verifying its correctness.
We introduce a verifier-based judge NoN with K generators, an instantiation of "best-of-K" or "judge-based" compound AI systems.
arXiv Detail & Related papers (2024-07-23T20:40:37Z) - Automating IRAC Analysis in Malaysian Contract Law using a Semi-Structured Knowledge Base [22.740895683854568]
This paper introduces LegalSemi, a benchmark specifically curated for legal scenario analysis.<n>LegalSemi comprises 54 legal scenarios, each rigorously annotated by legal experts, based on the comprehensive IRAC (Issue, Rule, Application, Conclusion) framework from Malaysian Contract Law.<n>A series of experiments were conducted to assess the usefulness of LegalSemi for IRAC analysis.
arXiv Detail & Related papers (2024-06-19T04:59:09Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
This approach allows for the computer-assisted analysis of abstract dialectical frameworks.
Exemplary applications include the formal analysis and verification of meta-theoretical properties.
arXiv Detail & Related papers (2023-12-08T09:32:26Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - A Principled Design of Image Representation: Towards Forensic Tasks [75.40968680537544]
We investigate the forensic-oriented image representation as a distinct problem, from the perspectives of theory, implementation, and application.
At the theoretical level, we propose a new representation framework for forensics, called Dense Invariant Representation (DIR), which is characterized by stable description with mathematical guarantees.
We demonstrate the above arguments on the dense-domain pattern detection and matching experiments, providing comparison results with state-of-the-art descriptors.
arXiv Detail & Related papers (2022-03-02T07:46:52Z) - From LSAT: The Progress and Challenges of Complex Reasoning [56.07448735248901]
We study the three challenging and domain-general tasks of the Law School Admission Test (LSAT), including analytical reasoning, logical reasoning and reading comprehension.
We propose a hybrid reasoning system to integrate these three tasks and achieve impressive overall performance on the LSAT tests.
arXiv Detail & Related papers (2021-08-02T05:43:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.