論文の概要: Searching for actual causes: Approximate algorithms with adjustable precision
- arxiv url: http://arxiv.org/abs/2507.07857v1
- Date: Thu, 10 Jul 2025 15:39:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.466911
- Title: Searching for actual causes: Approximate algorithms with adjustable precision
- Title(参考訳): 原因の探索:調整可能な精度の近似アルゴリズム
- Authors: Samuel Reyd, Ada Diaconescu, Jean-Louis Dessalles,
- Abstract要約: 因果関係は近年人気を集めている。機械学習モデルの性能、信頼性、解釈性の向上に寄与している。
近年、説明可能な人工知能(XAI)に関する文献が批判を浴びている。
複雑度と調整可能な精度と消耗度で実際の原因を特定するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.0323063834827417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causality has gained popularity in recent years. It has helped improve the performance, reliability, and interpretability of machine learning models. However, recent literature on explainable artificial intelligence (XAI) has faced criticism. The classical XAI and causality literature focuses on understanding which factors contribute to which consequences. While such knowledge is valuable for researchers and engineers, it is not what non-expert users expect as explanations. Instead, these users often await facts that cause the target consequences, i.e., actual causes. Formalizing this notion is still an open problem. Additionally, identifying actual causes is reportedly an NP-complete problem, and there are too few practical solutions to approximate formal definitions. We propose a set of algorithms to identify actual causes with a polynomial complexity and an adjustable level of precision and exhaustiveness. Our experiments indicate that the algorithms (1) identify causes for different categories of systems that are not handled by existing approaches (i.e., non-boolean, black-box, and stochastic systems), (2) can be adjusted to gain more precision and exhaustiveness with more computation time.
- Abstract(参考訳): 因果関係は近年人気を集めている。
これは、機械学習モデルの性能、信頼性、解釈可能性を改善するのに役立っている。
しかし近年、説明可能な人工知能(XAI)に関する文献が批判を浴びている。
古典的なXAIと因果関係の文献は、どの要因がどの結果に寄与するかを理解することに焦点を当てている。
このような知識は研究者やエンジニアにとって価値があるが、専門家でないユーザーが説明として期待するものではない。
その代わり、これらのユーザは、しばしば、標的となる結果、すなわち、実際の原因を引き起こす事実を待ちます。
この概念の形式化は依然として未解決の問題である。
さらに、実際の原因を特定することはNP完全問題であり、近似的な形式的定義に対する実践的な解決があまりに少ない。
本稿では,多項式複雑性と調整可能な精度と網羅度で実際の原因を特定するアルゴリズムを提案する。
実験の結果,(1) 既存の手法(非ブール系, ブラックボックス系, 確率系)で処理されていないシステムのカテゴリ別原因を同定し, (2) 計算時間を短縮して精度と疲労性を高めることができることがわかった。
関連論文リスト
- When can you trust feature selection? -- I: A condition-based analysis
of LASSO and generalised hardness of approximation [49.1574468325115]
近似入力を読み取る際に、LASSOのミニミサの正しいサポートセットを(確率$>1/2$で)決定できないことを示す。
不適切な入力の場合、アルゴリズムは永遠に動作するので、間違った答えを出すことはない。
無限条件数を持つ点を含む開集合上で定義される任意のアルゴリズムに対して、アルゴリズムが永久に実行されるか、間違った解を生成するような入力が存在する。
論文 参考訳(メタデータ) (2023-12-18T18:29:01Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
本稿では,ニューラルモデルによる反事実文の評価について検討する。
まず、神経因果モデル(NCM)が十分に表現可能であることを示す。
第2に,反事実分布の同時同定と推定を行うアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-30T18:29:09Z) - Stop ordering machine learning algorithms by their explainability! A
user-centered investigation of performance and explainability [0.0]
機械学習アルゴリズムのモデル性能と説明可能性のトレードオフについて検討する。
エンドユーザの認識では、トレードオフは徐々に減少しています。
第2の実験の結果、説明可能な人工知能の強化は説明可能性を高めるのに有効であるが、このタイプの説明はエンドユーザの知覚に不可欠な役割を担っていることがわかった。
論文 参考訳(メタデータ) (2022-06-20T08:32:38Z) - Refining neural network predictions using background knowledge [68.35246878394702]
学習システムにおける論理的背景知識を用いて,ラベル付きトレーニングデータの不足を補うことができることを示す。
そこで本研究では,修正された予測を元の予測に近い精度で検出する微分可能精細関数を提案する。
このアルゴリズムは、複雑なSATの公式に対して、非常に少ない繰り返しで最適に洗練され、勾配降下ができない解がしばしば見つかる。
論文 参考訳(メタデータ) (2022-06-10T10:17:59Z) - GRACE-C: Generalized Rate Agnostic Causal Estimation via Constraints [3.2374399328078285]
時系列データから因果学習アルゴリズムによって推定される図形構造は、生成プロセスの因果時間スケールがデータの測定時間スケールと一致しない場合、誤解を招く因果情報を提供することができる。
既存のアルゴリズムは、この課題に対応するための限られたリソースを提供するため、研究者は彼らが知っているモデルを使うか、あるいは完全に因果学習を行う必要がある。
既存の方法は、(1)因果差と測定値の違いが知られていること、(2)時間スケールの違いが不明な場合にのみ非常に少数のランダム変数を扱うこと、(3)変数のペアにのみ適用されること、4)変数のペアにしか適用できないこと、など、四つの異なる欠点に直面している。
論文 参考訳(メタデータ) (2022-05-18T22:38:57Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
我々は、古典的で有名なオンライングラフ探索問題の学習強化版について研究する。
本稿では,予測をよく知られたNearest Neighbor(NN)アルゴリズムに自然に統合するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-10T10:02:31Z) - Learning Generalized Causal Structure in Time-series [0.0]
我々は最近提案された「ニューロカオス」特徴学習技術(ChaosFEX特徴抽出器)に基づく機械学習パイプラインを開発する。
本研究では,最近提案された'neurochaos'特徴学習技術(ChaosFEX特徴抽出器)に基づく機械学習パイプラインを開発する。
論文 参考訳(メタデータ) (2021-12-06T14:48:13Z) - Counterfactuals and Causability in Explainable Artificial Intelligence:
Theory, Algorithms, and Applications [0.20999222360659603]
一部の研究者は、機械がある程度の人間レベルの説明性を達成するためには、因果的に理解できる説明を提供する必要があると主張した。
可利用性を提供する可能性のある特定のアルゴリズムのクラスは偽物である。
本稿では,多種多様な文献を体系的に検証し,その事実と説明可能な人工知能の因果性について述べる。
論文 参考訳(メタデータ) (2021-03-07T03:11:39Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - From Checking to Inference: Actual Causality Computations as
Optimization Problems [79.87179017975235]
本稿では、最適化問題として二元非巡回モデルよりも、因果推論の異なる概念を定式化するための新しいアプローチを提案する。
8000ドル以上の変数を持つモデルを用いて,MaxSAT が ILP を上回り,数秒単位でチェック処理を行う場合が多い。
論文 参考訳(メタデータ) (2020-06-05T10:56:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。