Not Only Consistency: Enhance Test-Time Adaptation with Spatio-temporal Inconsistency for Remote Physiological Measurement
- URL: http://arxiv.org/abs/2507.07908v1
- Date: Thu, 10 Jul 2025 16:39:49 GMT
- Title: Not Only Consistency: Enhance Test-Time Adaptation with Spatio-temporal Inconsistency for Remote Physiological Measurement
- Authors: Xiao Yang, Yuxuan Fan, Can Liu, Houcheng Su, Weichen Guo, Jiyao Wang, Dengbo He,
- Abstract summary: Remote photo signalsplesthysmography has emerged as a promising non-invasive method for monitoring the camera.<n>We propose a fully Test-Time Adaptation (TTA) strategy tailored for r tasks in this work.<n>Our method consistently outperforms existing techniques, presenting state-of-the-art performance in real-time self-text-supervised adaptation.
- Score: 3.979038581055512
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Remote photoplethysmography (rPPG) has emerged as a promising non-invasive method for monitoring physiological signals using the camera. Although various domain adaptation and generalization methods were proposed to promote the adaptability of deep-based rPPG models in unseen deployment environments, considerations in aspects like privacy concerns and real-time adaptation restrict their application in real-world deployment. Thus, we aim to propose a novel fully Test-Time Adaptation (TTA) strategy tailored for rPPG tasks in this work. Specifically, based on prior knowledge in physiology and our observations, we noticed not only there is spatio-temporal consistency in the frequency domain of rPPG signals, but also that inconsistency in the time domain was significant. Given this, by leveraging both consistency and inconsistency priors, we introduce an innovative expert knowledge-based self-supervised \textbf{C}onsistency-\textbf{i}n\textbf{C}onsistency-\textbf{i}ntegration (\textbf{CiCi}) framework to enhances model adaptation during inference. Besides, our approach further incorporates a gradient dynamic control mechanism to mitigate potential conflicts between priors, ensuring stable adaptation across instances. Through extensive experiments on five diverse datasets under the TTA protocol, our method consistently outperforms existing techniques, presenting state-of-the-art performance in real-time self-supervised adaptation without accessing source data. The code will be released later.
Related papers
- Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation [67.80294336559574]
Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios.<n>We propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk.
arXiv Detail & Related papers (2025-06-23T18:17:39Z) - ReservoirTTA: Prolonged Test-time Adaptation for Evolving and Recurring Domains [17.357842682605185]
ReservoirTTA is a novel plug-in framework designed for prolonged test-time adaptation.<n>At its core, ReservoirTTA maintains a reservoir of domain-specialized models.<n>Our theoretical analysis reveals key components that bound parameter variance and prevent model collapse.
arXiv Detail & Related papers (2025-05-20T15:39:20Z) - Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement [25.11883761217408]
Remote photoplethysmography (r) is gaining prominence for its non-invasive approach to monitoring physiological signals using only cameras.
Despite its promise, the adaptability of r models to new domains is hindered due to the environmental sensitivity of physiological signals.
We present Bi-TTA, a novel expert knowledge-based Bidirectional Test-Time Adapter framework.
arXiv Detail & Related papers (2024-09-25T19:55:20Z) - Fully Test-Time rPPG Estimation via Synthetic Signal-Guided Feature Learning [8.901227918730562]
TestTime Adaptation (TTA) enables the model to adaptively estimate r signals in various unseen domains by online adapting to unlabeled target data without referring to any source data.
We develop a synthetic signal-guided feature learning method by pseudo r signals as pseudo ground truths to guide a conditional generator in generating latent r features.
arXiv Detail & Related papers (2024-07-18T09:22:40Z) - Test-Time Domain Generalization for Face Anti-Spoofing [60.94384914275116]
Face Anti-Spoofing (FAS) is pivotal in safeguarding facial recognition systems against presentation attacks.
We introduce a novel Test-Time Domain Generalization framework for FAS, which leverages the testing data to boost the model's generalizability.
Our method, consisting of Test-Time Style Projection (TTSP) and Diverse Style Shifts Simulation (DSSS), effectively projects the unseen data to the seen domain space.
arXiv Detail & Related papers (2024-03-28T11:50:23Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
We propose to validate test-time adaptation methods using datasets for autonomous driving, namely CLAD-C and SHIFT.
We observe that current test-time adaptation methods struggle to effectively handle varying degrees of domain shift.
We enhance the well-established self-training framework by incorporating a small memory buffer to increase model stability.
arXiv Detail & Related papers (2023-09-18T19:34:23Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
A Continual Test-Time Adaptation task is proposed to adapt the pre-trained model to continually changing target domains.
We design a Visual Domain Adapter (ViDA) for CTTA, explicitly handling both domain-specific and domain-shared knowledge.
Our proposed method achieves state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-06-07T11:18:53Z) - Gradual Test-Time Adaptation by Self-Training and Style Transfer [5.110894308882439]
We show the natural connection between gradual domain adaptation and test-time adaptation.
We propose a new method based on self-training and style transfer.
We show the effectiveness of our method on the continual and gradual CIFAR10C, CIFAR100C, and ImageNet-C benchmark.
arXiv Detail & Related papers (2022-08-16T13:12:19Z) - Semantic Self-adaptation: Enhancing Generalization with a Single Sample [45.111358665370524]
We propose a self-adaptive approach for semantic segmentation.
It fine-tunes the parameters of convolutional layers to the input image using consistency regularization.
Our empirical study suggests that self-adaptation may complement the established practice of model regularization at training time.
arXiv Detail & Related papers (2022-08-10T12:29:01Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain without using any source data.
CoTTA is easy to implement and can be readily incorporated in off-the-shelf pre-trained models.
arXiv Detail & Related papers (2022-03-25T11:42:02Z) - Post-Contextual-Bandit Inference [57.88785630755165]
Contextual bandit algorithms are increasingly replacing non-adaptive A/B tests in e-commerce, healthcare, and policymaking.
They can both improve outcomes for study participants and increase the chance of identifying good or even best policies.
To support credible inference on novel interventions at the end of the study, we still want to construct valid confidence intervals on average treatment effects, subgroup effects, or value of new policies.
arXiv Detail & Related papers (2021-06-01T12:01:51Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.