Working with AI: Measuring the Occupational Implications of Generative AI
- URL: http://arxiv.org/abs/2507.07935v3
- Date: Tue, 22 Jul 2025 21:32:56 GMT
- Title: Working with AI: Measuring the Occupational Implications of Generative AI
- Authors: Kiran Tomlinson, Sonia Jaffe, Will Wang, Scott Counts, Siddharth Suri,
- Abstract summary: We analyze a dataset of 200k anonymized conversations between users and Microsoft Bing Copilot.<n>We find the most common work activities people seek AI assistance for involve gathering information and writing.<n>The most common activities that AI itself is performing are providing information and assistance, writing, teaching, and advising.
- Score: 8.165284336444593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the rapid adoption of generative AI and its potential to impact a wide range of tasks, understanding the effects of AI on the economy is one of society's most important questions. In this work, we take a step toward that goal by analyzing the work activities people do with AI, how successfully and broadly those activities are done, and combine that with data on what occupations do those activities. We analyze a dataset of 200k anonymized and privacy-scrubbed conversations between users and Microsoft Bing Copilot, a publicly available generative AI system. We find the most common work activities people seek AI assistance for involve gathering information and writing, while the most common activities that AI itself is performing are providing information and assistance, writing, teaching, and advising. Combining these activity classifications with measurements of task success and scope of impact, we compute an AI applicability score for each occupation. We find the highest AI applicability scores for knowledge work occupation groups such as computer and mathematical, and office and administrative support, as well as occupations such as sales whose work activities involve providing and communicating information. Additionally, we characterize the types of work activities performed most successfully, how wage and education correlate with AI applicability, and how real-world usage compares to predictions of occupational AI impact.
Related papers
- The SPACE of AI: Real-World Lessons on AI's Impact on Developers [0.807084206814932]
We study how developers perceive AI's influence across the dimensions of the SPACE framework: Satisfaction, Performance, Activity, Collaboration and Efficiency.<n>We find that AI is broadly adopted and widely seen as enhancing productivity, particularly for routine tasks.<n>Developers report increased efficiency and satisfaction, with less evidence of impact on collaboration.
arXiv Detail & Related papers (2025-07-31T21:45:54Z) - AI, Humans, and Data Science: Optimizing Roles Across Workflows and the Workforce [0.0]
We consider the potential and limitation of analytic, generative, and agentic AI to augment data scientists or take on tasks traditionally done by human analysts and researchers.<n>Just as earlier eras of survey analysis created issues when the increased ease of using statistical software allowed researchers to conduct analyses they did not fully understand, the new AI tools may create similar but larger risks.
arXiv Detail & Related papers (2025-07-15T17:59:06Z) - Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations [18.86239369192921]
We leverage a recent privacy-preserving system to analyze over four million Claude.ai conversations.<n>Our analysis reveals that AI usage primarily concentrates in software development and writing tasks.<n>We also analyze how AI is being used for tasks, finding 57% of usage suggests augmentation of human capabilities.
arXiv Detail & Related papers (2025-02-11T00:46:43Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We introduce TheAgentCompany, a benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker.<n>We find that the most competitive agent can complete 30% of tasks autonomously.<n>This paints a nuanced picture on task automation with simulating LM agents in a setting a real workplace.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - Unexploited Information Value in Human-AI Collaboration [23.353778024330165]
How to improve performance of a human-AI team is often not clear without knowing what particular information and strategies each agent employs.<n>We propose a model based in statistical decision theory to analyze human-AI collaboration.
arXiv Detail & Related papers (2024-11-03T01:34:45Z) - Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs [10.844598404826355]
One-third of U.S. employment is highly exposed to AI, primarily in high-skill jobs requiring a graduate or postgraduate level of education.<n>Even in high-skill occupations, AI exhibits high variability in task substitution, suggesting that AI and humans complement each other within the same occupation.<n>All results, models, and code are freely available online to allow the community to reproduce our results, compare outcomes, and use our work as a benchmark to monitor AI's progress over time.
arXiv Detail & Related papers (2024-07-27T08:14:18Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - AI and Jobs: Has the Inflection Point Arrived? Evidence from an Online Labor Platform [0.13124513975412255]
We investigate how AI influences freelancers across different online labor markets (OLMs)
To shed light on the underlying mechanisms, we developed a Cournot-type competition model.
We find that U.S. web developers tend to benefit more from the release of ChatGPT compared to their counterparts in other regions.
arXiv Detail & Related papers (2023-12-07T10:06:34Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI Collaboration in Data Storytelling [73.14508303965683]
We interviewed eighteen data workers from both industry and academia to learn where and how they would like to collaborate with AI.<n>Surprisingly, though the participants showed excitement about collaborating with AI, many of them also expressed reluctance and pointed out nuanced reasons.
arXiv Detail & Related papers (2023-04-17T15:30:05Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
We introduce Watch-And-Help (WAH), a challenge for testing social intelligence in AI agents.
In WAH, an AI agent needs to help a human-like agent perform a complex household task efficiently.
We build VirtualHome-Social, a multi-agent household environment, and provide a benchmark including both planning and learning based baselines.
arXiv Detail & Related papers (2020-10-19T21:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.