AI, Humans, and Data Science: Optimizing Roles Across Workflows and the Workforce
- URL: http://arxiv.org/abs/2507.11597v1
- Date: Tue, 15 Jul 2025 17:59:06 GMT
- Title: AI, Humans, and Data Science: Optimizing Roles Across Workflows and the Workforce
- Authors: Richard Timpone, Yongwei Yang,
- Abstract summary: We consider the potential and limitation of analytic, generative, and agentic AI to augment data scientists or take on tasks traditionally done by human analysts and researchers.<n>Just as earlier eras of survey analysis created issues when the increased ease of using statistical software allowed researchers to conduct analyses they did not fully understand, the new AI tools may create similar but larger risks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI is transforming research. It is being leveraged to construct surveys, synthesize data, conduct analysis, and write summaries of the results. While the promise is to create efficiencies and increase quality, the reality is not always as clear cut. Leveraging our framework of Truth, Beauty, and Justice (TBJ) which we use to evaluate AI, machine learning and computational models for effective and ethical use (Taber and Timpone 1997; Timpone and Yang 2024), we consider the potential and limitation of analytic, generative, and agentic AI to augment data scientists or take on tasks traditionally done by human analysts and researchers. While AI can be leveraged to assist analysts in their tasks, we raise some warnings about push-button automation. Just as earlier eras of survey analysis created some issues when the increased ease of using statistical software allowed researchers to conduct analyses they did not fully understand, the new AI tools may create similar but larger risks. We emphasize a human-machine collaboration perspective (Daugherty and Wilson 2018) throughout the data science workflow and particularly call out the vital role that data scientists play under VUCA decision areas. We conclude by encouraging the advance of AI tools to complement data scientists but advocate for continued training and understanding of methods to ensure the substantive value of research is fully achieved by applying, interpreting, and acting upon results most effectively and ethically.
Related papers
- Social Scientists on the Role of AI in Research [2.2665233748698355]
We present a community-centric study drawing on 284 survey responses and 15 semi-structured interviews with social scientists.<n>We find that the use of AI in research settings has increased significantly among social scientists in step with the widespread popularity of generative AI (genAI)<n>Ethical concerns, particularly around automation bias, deskilling, research misconduct, complex interpretability, and representational harm, are raised in relation to genAI.
arXiv Detail & Related papers (2025-06-12T19:55:36Z) - Measuring Data Science Automation: A Survey of Evaluation Tools for AI Assistants and Agents [11.783547185760007]
Large Language Models (LLMs) are increasingly used as assistants for data science.<n> Proper automation of some data-science activities is now promised by the rise of LLM agents.
arXiv Detail & Related papers (2025-06-10T13:47:22Z) - Towards Decoding Developer Cognition in the Age of AI Assistants [9.887133861477233]
We propose a controlled observational study combining physiological measurements (EEG and eye tracking) with interaction data to examine developers' use of AI-assisted programming tools.<n>We will recruit professional developers to complete programming tasks both with and without AI assistance while measuring their cognitive load and task completion time.
arXiv Detail & Related papers (2025-01-05T23:25:21Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
We present a survey of AI techniques proposed in the last 15 years to help researchers conduct systematic analyses of scientific literature.
We describe the tasks currently supported, the types of algorithms applied, and available tools proposed in 34 primary studies.
arXiv Detail & Related papers (2024-01-13T19:12:49Z) - Can AI Serve as a Substitute for Human Subjects in Software Engineering
Research? [24.39463126056733]
This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI)
We explore the potential of AI-generated synthetic text as an alternative source of qualitative data.
We discuss the prospective development of new foundation models aimed at emulating human behavior in observational studies and user evaluations.
arXiv Detail & Related papers (2023-11-18T14:05:52Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
There have been severe concerns over the trustworthiness of AI technologies.
Machine and deep learning algorithms depend heavily on the data used during their development.
We propose a framework to evaluate the datasets through a responsible rubric.
arXiv Detail & Related papers (2023-10-24T14:01:53Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI Collaboration in Data Storytelling [73.14508303965683]
We interviewed eighteen data workers from both industry and academia to learn where and how they would like to collaborate with AI.<n>Surprisingly, though the participants showed excitement about collaborating with AI, many of them also expressed reluctance and pointed out nuanced reasons.
arXiv Detail & Related papers (2023-04-17T15:30:05Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
Recently, the role of data in AI has been significantly magnified, giving rise to the emerging concept of data-centric AI.
In this survey, we discuss the necessity of data-centric AI, followed by a holistic view of three general data-centric goals.
We believe this is the first comprehensive survey that provides a global view of a spectrum of tasks across various stages of the data lifecycle.
arXiv Detail & Related papers (2023-03-17T17:44:56Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.