論文の概要: Input Conditioned Layer Dropping in Speech Foundation Models
- arxiv url: http://arxiv.org/abs/2507.07954v1
- Date: Thu, 10 Jul 2025 17:39:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.51577
- Title: Input Conditioned Layer Dropping in Speech Foundation Models
- Title(参考訳): 音声基礎モデルにおける入力条件付き層滴法
- Authors: Abdul Hannan, Daniele Falavigna, Alessio Brutti,
- Abstract要約: 層ドロップ(mathcalLD$)は、計算負荷を減らすために、推論中にバックボーンネットワークの層の一部をスキップする。
本稿では,ネットワークの入力機能と,処理層の最適組み合わせを決定するための軽量層選択ネットワークを用いた入力駆動$mathcalLD$を提案する。
- 参考スコア(独自算出の注目度): 11.05223262950967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Curating foundation speech models for edge and IoT settings, where computational resources vary over time, requires dynamic architectures featuring adaptable reduction strategies. One emerging approach is layer dropping ($\mathcal{LD}$) which skips fraction of the layers of a backbone network during inference to reduce the computational load. This allows transforming static models into dynamic ones. However, existing approaches exhibit limitations either in the mode of selecting layers or by significantly modifying the neural architecture. To this end, we propose input-driven $\mathcal{LD}$ that employs the network's input features and a lightweight layer selecting network to determine the optimum combination of processing layers. Extensive experimentation on 4 speech and audio public benchmarks, using two different pre-trained foundation models, demonstrates the effectiveness of our approach, thoroughly outperforming random dropping and producing on-par (or better) results to early exit.
- Abstract(参考訳): エッジとIoT設定のための基礎的なスピーチモデルを計算するには、時間とともに計算リソースが変化するため、適応可能なリダクション戦略を備えた動的アーキテクチャが必要になる。
新たなアプローチの1つがレイヤドロップ($\mathcal{LD}$)であり、推論中にバックボーンネットワークの層の一部をスキップして計算負荷を削減する。
これにより、静的モデルを動的モデルに変換することができる。
しかし、既存のアプローチでは、レイヤの選択モードか、ニューラルネットワークアーキテクチャの大幅な変更によって制限が示される。
この目的のために,ネットワークの入力機能と軽量層選択ネットワークを利用して処理層の最適組み合わせを決定する入力駆動$\mathcal{LD}$を提案する。
2つの異なる事前学習基礎モデルを用いた4つの音声と音声の公開ベンチマークによる大規模な実験は、我々のアプローチの有効性を実証し、ランダムな投棄を徹底的に上回り、早期退院の結果を出します。
関連論文リスト
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
LLM(Large Language Models)をスクラッチからトレーニングするには膨大な計算資源が必要であるため、非常に高価である。
モデルスケーリングアップは、より小さなモデルのパラメータを活用してより大きなモデルを作成することで、有望なソリューションを提供する。
深度スケールアップのための新しい学習方法である textbfLESA を提案する。
論文 参考訳(メタデータ) (2025-02-19T14:58:48Z) - Dynamic layer selection in decoder-only transformers [21.18795712840146]
自然言語生成のための2つの一般的な動的推論手法を実証的に検討する。
トレーニング済みのデコーダのみのモデルでは,層スキップによる層除去が著しく堅牢であることがわかった。
また、シーケンス毎の動的計算割り当ては、大きな効率向上を約束することを示す。
論文 参考訳(メタデータ) (2024-10-26T00:44:11Z) - Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Accelerating Inference in Large Language Models with a Unified Layer Skipping Strategy [67.45518210171024]
動的計算手法は、いくつかの計算層をスキップすることで、Large Language Models (LLM) に対する顕著な加速を示す。
対象の高速化率のみに基づいて計算をスキップする層数を選択する統一層スキーッピング戦略を提案する。
機械翻訳とテキスト要約という2つの共通タスクの実験結果は、目標速度比が与えられた場合、統一層スキーピング戦略は推論性能と実際のモデルスループットの両方を著しく向上させることを示している。
論文 参考訳(メタデータ) (2024-04-10T12:12:07Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
レイヤワイドフィードバックフィードバック(LFP)は、ニューラルネットワークのような予測器のための新しいトレーニング原則である。
LFPはそれぞれの貢献に基づいて個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分と有害な部分の弱体化を両立させる手法である。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
ニューラルネットワークパラメータの平均化は、2つの独立したモデルの知識の直感的な方法である。
フェデレートラーニングにおいて最も顕著に用いられている。
私たちは、単一グループやグループを平均化するモデルの性能を分析します。
論文 参考訳(メタデータ) (2023-07-13T09:39:10Z) - Efficient Implementation of a Multi-Layer Gradient-Free Online-Trainable
Spiking Neural Network on FPGA [0.31498833540989407]
ODESAは、グラデーションを使わずに、エンド・ツー・エンドの多層オンラインローカル教師ありトレーニングを行う最初のネットワークである。
本研究は,ネットワークアーキテクチャと重みとしきい値のオンライントレーニングを,大規模ハードウェア上で効率的に実施可能であることを示す。
論文 参考訳(メタデータ) (2023-05-31T00:34:15Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。