MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation
- URL: http://arxiv.org/abs/2310.03302v2
- Date: Sun, 14 Apr 2024 21:02:16 GMT
- Title: MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation
- Authors: Qian Huang, Jian Vora, Percy Liang, Jure Leskovec,
- Abstract summary: We introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM.
For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs.
We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate.
- Score: 96.71370747681078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central aspect of machine learning research is experimentation, the process of designing and running experiments, analyzing the results, and iterating towards some positive outcome (e.g., improving accuracy). Could agents driven by powerful language models perform machine learning experimentation effectively? To answer this question, we introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM. For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs. We then construct an agent that can perform ML experimentation based on ReAct framework. We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate. It can build compelling ML models over many tasks in MLAgentBench with 37.5% average success rate. Our agents also display highly interpretable plans and actions. However, the success rates vary considerably; they span from 100% on well-established older datasets to as low as 0% on recent Kaggle challenges created potentially after the underlying LM was trained. Finally, we identify several key challenges for LM-based agents such as long-term planning and reducing hallucination. Our code is released at https://github.com/snap-stanford/MLAgentBench.
Related papers
- Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
We introduce Spider2-V, the first multimodal agent benchmark focusing on professional data science and engineering.
Spider2-V features real-world tasks in authentic computer environments and incorporating 20 enterprise-level professional applications.
These tasks evaluate the ability of a multimodal agent to perform data-related tasks by writing code and managing the GUI in enterprise data software systems.
arXiv Detail & Related papers (2024-07-15T17:54:37Z) - Automating Code Adaptation for MLOps -- A Benchmarking Study on LLMs [0.0]
We evaluate the performance of OpenAI (gpt-3.5-turbo) and WizardCoder (open-source, 15B parameters) models on the automated accomplishment of various MLOps functionalities.
arXiv Detail & Related papers (2024-05-10T22:18:43Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
Open-sourced Large Language Models (LLMs) have achieved great success in various NLP tasks, however, they are still far inferior to API-based models when acting as agents.
This paper delivers three key observations: (1) the current agent training corpus is entangled with both formats following and agent reasoning, which significantly shifts from the distribution of its pre-training data; (2) LLMs exhibit different learning speeds on the capabilities required by agent tasks; and (3) current approaches have side-effects when improving agent abilities by introducing hallucinations.
We propose Agent-FLAN to effectively Fine-tune LANguage models for Agents.
arXiv Detail & Related papers (2024-03-19T16:26:10Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility.
We propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
Our experiments on three datasets show that the LLMs, when equipped with ConAgents, outperform baselines with substantial improvement.
arXiv Detail & Related papers (2024-03-05T15:08:16Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
We present DS-Agent, a novel framework that harnesses large language models (LLMs) agent and case-based reasoning (CBR)
In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle.
In the deployment stage, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm, significantly reducing the demand on foundational capabilities of LLMs.
arXiv Detail & Related papers (2024-02-27T12:26:07Z) - More Agents Is All You Need [16.372072265248192]
We find that, simply via a sampling-and-voting method, the performance of large language models (LLMs) scales with the number of agents instantiated.
arXiv Detail & Related papers (2024-02-03T05:55:24Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - Operationalizing Machine Learning: An Interview Study [13.300075655862573]
We conduct semi-structured interviews with 18 machine learning engineers (MLEs) working across many applications.
Our interviews expose three variables that govern success for a production ML deployment: Velocity, Validation, and Versioning.
We summarize common practices for successful ML experimentation, deployment, and sustaining production performance.
arXiv Detail & Related papers (2022-09-16T16:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.