Lightweight Cloud Masking Models for On-Board Inference in Hyperspectral Imaging
- URL: http://arxiv.org/abs/2507.08052v1
- Date: Thu, 10 Jul 2025 08:10:11 GMT
- Title: Lightweight Cloud Masking Models for On-Board Inference in Hyperspectral Imaging
- Authors: Mazen Ali, António Pereira, Fabio Gentile, Aser Cortines, Sam Mugel, Román Orús, Stelios P. Neophytides, Michalis Mavrovouniotis,
- Abstract summary: Cloud and cloud shadow masking is a crucial preprocessing step in hyperspectral satellite imaging.<n>This study evaluates various machine learning approaches, including gradient boosting and convolutional neural networks (CNNs)<n>CNNs with feature reduction emerged as the most efficient, offering a balance of high accuracy, low storage requirements, and rapid inference times.
- Score: 0.6775616141339018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud and cloud shadow masking is a crucial preprocessing step in hyperspectral satellite imaging, enabling the extraction of high-quality, analysis-ready data. This study evaluates various machine learning approaches, including gradient boosting methods such as XGBoost and LightGBM as well as convolutional neural networks (CNNs). All boosting and CNN models achieved accuracies exceeding 93%. Among the investigated models, the CNN with feature reduction emerged as the most efficient, offering a balance of high accuracy, low storage requirements, and rapid inference times on both CPUs and GPUs. Variations of this version, with only up to 597 trainable parameters, demonstrated the best trade-off in terms of deployment feasibility, accuracy, and computational efficiency. These results demonstrate the potential of lightweight artificial intelligence (AI) models for real-time hyperspectral image processing, supporting the development of on-board satellite AI systems for space-based applications.
Related papers
- Multi-Strategy Improved Snake Optimizer Accelerated CNN-LSTM-Attention-Adaboost for Trajectory Prediction [9.489729227685057]
This paper proposes a hybrid CNN-LSTM-attention-adaboost neural network model incorporating a multi-strategy improved snake-herd optimization (SO) algorithm.<n>The results show that SO-adaboost outperforms traditional CLAs such as particle swarm, whale, and gray wolf in handling large-scale high-dimensional trajectory data.<n>In addition, introducing the full-strategy collaborative improvement SO algorithm improves the model's prediction accuracy by 39.89%.
arXiv Detail & Related papers (2025-07-21T17:44:06Z) - LAID: Lightweight AI-Generated Image Detection in Spatial and Spectral Domains [6.676901499867856]
Current state-of-the-art AIGI detection methods rely on large, deep neural architectures.<n>We introduce LAID, the first framework that benchmarks and evaluates the detection performance and efficiency of off-the-shelf lightweight neural networks.<n>Our results demonstrate that lightweight models can achieve competitive accuracy, even under adversarial conditions.
arXiv Detail & Related papers (2025-07-07T16:18:19Z) - Efficient FPGA-accelerated Convolutional Neural Networks for Cloud Detection on CubeSats [0.5420492913071214]
We present the implementation of four FPGA-accelerated convolutional neural network (CNN) models for onboard cloud detection in resource-constrained CubeSat missions.<n>This study explores both pixel-wise (Pixel-Net and Patch-Net) and image-wise (U-Net and Scene-Net) models to benchmark trade-offs in accuracy, latency, and model complexity.<n>All models retained high accuracy post-FPGA integration, with a cumulative maximum accuracy drop of only 0.6% after quantization and pruning.
arXiv Detail & Related papers (2025-04-04T19:32:47Z) - Masked Autoencoders Are Effective Tokenizers for Diffusion Models [56.08109308294133]
MAETok is an autoencoder that learns semantically rich latent space while maintaining reconstruction fidelity.<n>MaETok achieves significant practical improvements, enabling a gFID of 1.69 with 76x faster training and 31x higher inference throughput for 512x512 generation.
arXiv Detail & Related papers (2025-02-05T18:42:04Z) - Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
We propose a novel framework that significantly reduces data volume while enhancing classification accuracy.<n>Our model employs a bidirectional reversed convolutional neural network (CNN) to efficiently extract spectral features, complemented by a specialized block for spatial feature analysis.
arXiv Detail & Related papers (2024-11-29T23:32:26Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Edge-Cloud Collaborative Satellite Image Analysis for Efficient Man-Made Structure Recognition [2.110762118285028]
The paper presents a new satellite image processing architecture combining edge and cloud computing.
By employing lightweight models at the edge, the system initially identifies potential man-made structures from satellite imagery.
These identified images are then transmitted to the cloud, where a more complex model refines the classification.
arXiv Detail & Related papers (2024-10-08T03:31:32Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.<n>Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation [2.3636539018632616]
This work empirically investigates the optimization of complex deep learning models to analyze their functionality on an embedded device.
It evaluates the effectiveness of the optimized models in terms of their inference speed for image classification and video action detection.
arXiv Detail & Related papers (2024-06-25T17:34:52Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.