Mallows Model with Learned Distance Metrics: Sampling and Maximum Likelihood Estimation
- URL: http://arxiv.org/abs/2507.08108v1
- Date: Thu, 10 Jul 2025 18:52:09 GMT
- Title: Mallows Model with Learned Distance Metrics: Sampling and Maximum Likelihood Estimation
- Authors: Yeganeh Alimohammadi, Kiana Asgari,
- Abstract summary: We propose a generalization of Mallows model that learns the distance metric directly from data.<n>Specifically, we focus on $L_alpha$ distances: $d_alpha(pi,sigma):=sum_i=1 |pi(i)-sigma(i)|alpha$.<n>Using this sampling algorithm, we propose an efficient Maximum Likelihood Estimation (MLE) algorithm that jointly estimates the central ranking, the dispersion parameter, and the optimal distance metric.
- Score: 0.1534667887016089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: \textit{Mallows model} is a widely-used probabilistic framework for learning from ranking data, with applications ranging from recommendation systems and voting to aligning language models with human preferences~\cite{chen2024mallows, kleinberg2021algorithmic, rafailov2024direct}. Under this model, observed rankings are noisy perturbations of a central ranking $\sigma$, with likelihood decaying exponentially in distance from $\sigma$, i.e, $P (\pi) \propto \exp\big(-\beta \cdot d(\pi, \sigma)\big),$ where $\beta > 0$ controls dispersion and $d$ is a distance function. Existing methods mainly focus on fixed distances (such as Kendall's $\tau$ distance), with no principled approach to learning the distance metric directly from data. In practice, however, rankings naturally vary by context; for instance, in some sports we regularly see long-range swaps (a low-rank team beating a high-rank one), while in others such events are rare. Motivated by this, we propose a generalization of Mallows model that learns the distance metric directly from data. Specifically, we focus on $L_\alpha$ distances: $d_\alpha(\pi,\sigma):=\sum_{i=1} |\pi(i)-\sigma(i)|^\alpha$. For any $\alpha\geq 1$ and $\beta>0$, we develop a Fully Polynomial-Time Approximation Scheme (FPTAS) to efficiently generate samples that are $\epsilon$- close (in total variation distance) to the true distribution. Even in the special cases of $L_1$ and $L_2$, this generalizes prior results that required vanishing dispersion ($\beta\to0$). Using this sampling algorithm, we propose an efficient Maximum Likelihood Estimation (MLE) algorithm that jointly estimates the central ranking, the dispersion parameter, and the optimal distance metric. We prove strong consistency results for our estimators (for any values of $\alpha$ and $\beta$), and we validate our approach empirically using datasets from sports rankings.
Related papers
- Robust Distribution Learning with Local and Global Adversarial Corruptions [17.22168727622332]
We develop an efficient finite-sample algorithm with error bounded by $sqrtvarepsilon k + rho + tildeO(dsqrtkn-1/(k lor 2))$ when $P$ has bounded covariance.
Our efficient procedure relies on a novel trace norm approximation of an ideal yet intractable 2-Wasserstein projection estimator.
arXiv Detail & Related papers (2024-06-10T17:48:36Z) - Revisiting Step-Size Assumptions in Stochastic Approximation [1.3654846342364308]
It is shown for the first time that this assumption is not required for convergence and finer results.<n>Rates of convergence are obtained for the standard algorithm and for estimates obtained via the averaging technique of Polyak and Ruppert.<n>Results from numerical experiments illustrate that $beta_theta$ may be large due to a combination of multiplicative noise and Markovian memory.
arXiv Detail & Related papers (2024-05-28T05:11:05Z) - Multiple-policy Evaluation via Density Estimation [30.914344538340412]
We propose an algorithm named $mathrmCAESAR$ for this problem.
Up to low order and logarithmic terms $mathrmCAESAR$ achieves a sample complexity $tildeOleft(fracH4epsilon2sum_h=1Hmax_kin[K]sum_s,afrac(d_hpik(s,a))2mu*_h(s,a)right)$, where $dpi
arXiv Detail & Related papers (2024-03-29T23:55:25Z) - Stochastic Approximation Approaches to Group Distributionally Robust Optimization and Beyond [89.72693227960274]
This paper investigates group distributionally robust optimization (GDRO) with the goal of learning a model that performs well over $m$ different distributions.
To reduce the number of samples in each round from $m$ to 1, we cast GDRO as a two-player game, where one player conducts and the other executes an online algorithm for non-oblivious multi-armed bandits.
In the second scenario, we propose to optimize the average top-$k$ risk instead of the maximum risk, thereby mitigating the impact of distributions.
arXiv Detail & Related papers (2023-02-18T09:24:15Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Distributed k-Means with Outliers in General Metrics [0.6117371161379208]
We present a distributed coreset-based 3-round approximation algorithm for k-means with $z$ outliers for general metric spaces.
An important feature of our algorithm is that it obliviously adapts to the intrinsic complexity of the dataset, captured by the dimension doubling $D$ of the metric space.
arXiv Detail & Related papers (2022-02-16T16:24:31Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
One of its most powerful and successful modalities approximates every distribution to an $ell$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d_$.
We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation.
arXiv Detail & Related papers (2022-02-15T03:49:28Z) - Sampling from Log-Concave Distributions with Infinity-Distance
Guarantees and Applications to Differentially Private Optimization [33.38289436686841]
We present an algorithm that outputs a point from a distributionO(varepsilon)$close to $$ in infinity-distance.
We also present a "soft-pi" version of the Dikin walk which may be independent interest.
arXiv Detail & Related papers (2021-11-07T13:44:50Z) - Dynamic Ranking with the BTL Model: A Nearest Neighbor based Rank
Centrality Method [5.025654873456756]
We study an extension of the classic BTL (Bradley-Terry-Luce) model for the static setting to our dynamic setup.
We aim at recovering the latent strengths of the items $w_t* in mathbbRn$ at any time.
We also complement our theoretical analysis with experiments on real and synthetic data.
arXiv Detail & Related papers (2021-09-28T14:01:40Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.