論文の概要: Occlusion-Aware Temporally Consistent Amodal Completion for 3D Human-Object Interaction Reconstruction
- arxiv url: http://arxiv.org/abs/2507.08137v2
- Date: Mon, 04 Aug 2025 02:13:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 14:07:57.478072
- Title: Occlusion-Aware Temporally Consistent Amodal Completion for 3D Human-Object Interaction Reconstruction
- Title(参考訳): 咬合を意識した3次元物体間相互作用再構成のための時間的アモーダルコンプリート
- Authors: Hyungjun Doh, Dong In Lee, Seunggeun Chi, Pin-Hao Huang, Kwonjoon Lee, Sangpil Kim, Karthik Ramani,
- Abstract要約: 本稿では,モノクロ映像から動的物体間相互作用を再構築するための新しい枠組みを提案する。
本手法は時間的コンテキストを統合し,ビデオシーケンス間のコヒーレンスを漸進的に洗練し,再構成を安定化させる。
難解な単眼ビデオに対する3Dガウススプラッティングによるアプローチの有効性を検証した。
- 参考スコア(独自算出の注目度): 12.808076999570002
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a novel framework for reconstructing dynamic human-object interactions from monocular video that overcomes challenges associated with occlusions and temporal inconsistencies. Traditional 3D reconstruction methods typically assume static objects or full visibility of dynamic subjects, leading to degraded performance when these assumptions are violated-particularly in scenarios where mutual occlusions occur. To address this, our framework leverages amodal completion to infer the complete structure of partially obscured regions. Unlike conventional approaches that operate on individual frames, our method integrates temporal context, enforcing coherence across video sequences to incrementally refine and stabilize reconstructions. This template-free strategy adapts to varying conditions without relying on predefined models, significantly enhancing the recovery of intricate details in dynamic scenes. We validate our approach using 3D Gaussian Splatting on challenging monocular videos, demonstrating superior precision in handling occlusions and maintaining temporal stability compared to existing techniques.
- Abstract(参考訳): 本稿では,モノクロ映像からの動的物体間相互作用を再構築するための新しい枠組みを提案する。
従来の3D再構成手法では、静的な物体や動的対象の完全な視認性を前提としており、特に相互閉塞が発生するシナリオでは、これらの仮定が違反された場合に性能が低下する。
これを解決するために,本フレームワークはアモーダル完備化を利用して,部分的不明瞭な領域の完全な構造を推定する。
個別のフレームで動作する従来の手法とは異なり、この手法は時間的コンテキストを統合し、ビデオシーケンス間のコヒーレンスを徐々に洗練し、再構成を安定化させる。
このテンプレートフリー戦略は、事前定義されたモデルに頼ることなく様々な条件に適応し、動的シーンにおける複雑な詳細の回復を著しく促進する。
提案手法は3次元ガウススプラッティングを用いてモノクロビデオに挑戦し,既存の手法と比較してオクルージョン処理や時間的安定性の維持に優れた精度を示す。
関連論文リスト
- SplitGaussian: Reconstructing Dynamic Scenes via Visual Geometry Decomposition [14.381223353489062]
textbfSplitGaussianは、シーン表現を静的および動的コンポーネントに明示的に分解する新しいフレームワークである。
SplitGaussianは、レンダリング品質、幾何学的安定性、動き分離において、最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2025-08-06T09:00:13Z) - VDEGaussian: Video Diffusion Enhanced 4D Gaussian Splatting for Dynamic Urban Scenes Modeling [68.65587507038539]
本稿では,動的都市景観モデリングのための拡散強調4次元ガウス平滑化フレームワークを提案する。
我々の重要な洞察は、テスト時間に適応したビデオ拡散モデルから頑健で時間的に一貫した事前情報を抽出することである。
提案手法は, 高速移動物体の動的モデリングを著しく向上させ, 2dBのPSNRゲインを近似的に達成する。
論文 参考訳(メタデータ) (2025-08-04T07:24:05Z) - GaVS: 3D-Grounded Video Stabilization via Temporally-Consistent Local Reconstruction and Rendering [54.489285024494855]
ビデオの安定化は、元のユーザの動きの意図を保ちながら、望ましくないシャキネスを除去するので、ビデオ処理に欠かせない。
既存のアプローチは、運用するドメインによって、ユーザエクスペリエンスを低下させるいくつかの問題に悩まされます。
ビデオの安定化を時間的に一貫性のある局所的再構成とレンダリングのパラダイムとして再構成する,新しい3Dグラウンドアプローチである textbfGaVS を紹介する。
論文 参考訳(メタデータ) (2025-06-30T15:24:27Z) - STDR: Spatio-Temporal Decoupling for Real-Time Dynamic Scene Rendering [15.873329633980015]
既存の3DGSに基づく動的再構成法は、しばしばtextbfSTDR(リアルタイムレンダリングのための空間結合デテンポラル)に悩まされる
実時間レンダリングのためのテキストbfSTDR (Spatio-coupling DeTemporal for Real-time rendering) を提案する。
論文 参考訳(メタデータ) (2025-05-28T14:26:41Z) - Temporally Consistent Object-Centric Learning by Contrasting Slots [23.203973564679508]
ビデオオブジェクト中心モデルに対して、新しいオブジェクトレベルの時間的コントラスト損失を導入する。
本手法は学習対象中心表現の時間的一貫性を著しく向上させる。
論文 参考訳(メタデータ) (2024-12-18T19:46:04Z) - Feed-Forward Bullet-Time Reconstruction of Dynamic Scenes from Monocular Videos [101.48581851337703]
動的シーンのリアルタイム再構成と新しいビュー合成のための,モーション対応フィードフォワードモデルであるBTimerを提案する。
提案手法は,すべてのコンテキストフレームから情報を集約することにより,所定の目標("bullet')タイムスタンプにおける3次元ガウススティング表現の全体像を再構成する。
カジュアルなモノクロのダイナミックビデオが与えられた後、BTimerは150ms以内の弾道時間シーンを再構築し、静的および動的両方のシーンデータセットで最先端のパフォーマンスに到達した。
論文 参考訳(メタデータ) (2024-12-04T18:15:06Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
本稿では,高時間分解能連続運動データと動的シーン再構成のための変形可能な3D-GSを併用したイベントカメラについて紹介する。
本稿では、3次元再構成としきい値モデリングの両方を大幅に改善する相互強化プロセスを作成するGS-Thresholdジョイントモデリング戦略を提案する。
提案手法は,合成および実世界の動的シーンを用いた最初のイベント包摂型4Dベンチマークであり,その上で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-25T08:23:38Z) - TFS-NeRF: Template-Free NeRF for Semantic 3D Reconstruction of Dynamic Scene [25.164085646259856]
本稿では,スパースやシングルビューRGBビデオから撮影したダイナミックシーンのためのテンプレートレス3DセマンティックNeRFを提案する。
相互作用する物体の動きを遠ざけ, 濃度ごとのスキン厚みを最適化することにより, 高精度でセマンティックに分離可能なジオメトリを効率的に生成する。
論文 参考訳(メタデータ) (2024-09-26T01:34:42Z) - Shape of Motion: 4D Reconstruction from a Single Video [51.04575075620677]
本稿では,全列長3D動作を特徴とする汎用動的シーンを再構築する手法を提案する。
シーン動作をコンパクトなSE3モーションベースで表現することで,3次元動作の低次元構造を利用する。
本手法は,3D/2Dの長距離動き推定と動的シーンにおける新しいビュー合成の両面において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-07-18T17:59:08Z) - Low-Light Video Enhancement via Spatial-Temporal Consistent Decomposition [52.89441679581216]
低照度ビデオエンハンスメント(LLVE)は、激しい視認性とノイズに悩まされる動的または静的なシーンの復元を目指している。
本稿では、ビューに依存しない、ビューに依存しないコンポーネントを組み込んだ革新的なビデオ分解戦略を提案する。
我々のフレームワークは、既存のメソッドを一貫して上回り、新しいSOTAパフォーマンスを確立します。
論文 参考訳(メタデータ) (2024-05-24T15:56:40Z) - Enhanced Spatio-Temporal Context for Temporally Consistent Robust 3D
Human Motion Recovery from Monocular Videos [5.258814754543826]
本稿では,モノクロ映像からの時間的一貫した動き推定手法を提案する。
汎用的なResNetのような機能を使う代わりに、本手法ではボディ認識機能表現と独立したフレーム単位のポーズを使用する。
提案手法は, 高速化誤差を著しく低減し, 既存の最先端手法よりも優れる。
論文 参考訳(メタデータ) (2023-11-20T10:53:59Z) - SCFusion: Real-time Incremental Scene Reconstruction with Semantic
Completion [86.77318031029404]
本研究では,シーン再構成とセマンティックシーン補完を段階的かつリアルタイムに共同で行うフレームワークを提案する。
我々のフレームワークは、3Dグローバルモデルでセマンティックコンプリートを正確かつ効率的に融合させるために、占有マップを処理し、ボクセル状態を活用するように設計された新しいニューラルアーキテクチャに依存している。
論文 参考訳(メタデータ) (2020-10-26T15:31:52Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSFは立体映像からの3次元シーン構造と動きの同時再構成のための自己教師型フレームワークである。
提案モデルでは,課題の画像の相違やシーンフローを確実に予測できることを示す。
最先端技術よりも優れた一般化を実現し、目に見えない領域に迅速かつ堅牢に適応する。
論文 参考訳(メタデータ) (2020-06-19T17:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。