CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk
- URL: http://arxiv.org/abs/2507.08150v1
- Date: Thu, 10 Jul 2025 20:13:00 GMT
- Title: CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk
- Authors: Ilia Azizi, Juraj Bodik, Jakob Heiss, Bin Yu,
- Abstract summary: We propose CLEAR, a calibration method with two distinct parameters.<n>We show how it can be used with (i) quantile regression for aleatoric uncertainty and (ii) ensembles drawn from the Predictability-Computability-Stability framework.<n> CLEAR achieves an average improvement of 28.2% and 17.4% in the interval width compared to the two individually calibrated baselines.
- Score: 7.755784217796677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate uncertainty quantification is critical for reliable predictive modeling, especially in regression tasks. Existing methods typically address either aleatoric uncertainty from measurement noise or epistemic uncertainty from limited data, but not necessarily both in a balanced way. We propose CLEAR, a calibration method with two distinct parameters, $\gamma_1$ and $\gamma_2$, to combine the two uncertainty components for improved conditional coverage. CLEAR is compatible with any pair of aleatoric and epistemic estimators; we show how it can be used with (i) quantile regression for aleatoric uncertainty and (ii) ensembles drawn from the Predictability-Computability-Stability (PCS) framework for epistemic uncertainty. Across 17 diverse real-world datasets, CLEAR achieves an average improvement of 28.2% and 17.4% in the interval width compared to the two individually calibrated baselines while maintaining nominal coverage. This improvement can be particularly evident in scenarios dominated by either high epistemic or high aleatoric uncertainty.
Related papers
- SConU: Selective Conformal Uncertainty in Large Language Models [59.25881667640868]
We propose a novel approach termed Selective Conformal Uncertainty (SConU)<n>We develop two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level.<n>Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions.
arXiv Detail & Related papers (2025-04-19T03:01:45Z) - Semiparametric conformal prediction [79.6147286161434]
We construct a conformal prediction set accounting for the joint correlation structure of the vector-valued non-conformity scores.<n>We flexibly estimate the joint cumulative distribution function (CDF) of the scores.<n>Our method yields desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Integrating Uncertainty Awareness into Conformalized Quantile Regression [12.875863572064986]
We propose a new variant of the Conformalized Quantile Regression (CQR) methodology to adjust quantile regressors differentially across the feature space.
Compared to CQR, our methods enjoy the same distribution-free theoretical coverage guarantees, while demonstrating stronger conditional coverage properties in simulated settings and real-world data sets alike.
arXiv Detail & Related papers (2023-06-14T18:28:53Z) - An Epistemic and Aleatoric Decomposition of Arbitrariness to Constrain the Set of Good Models [7.620967781722717]
Recent research reveals that machine learning (ML) models are highly sensitive to minor changes in their training procedure.<n>We show that stability decomposes into epistemic and aleatoric components, capturing the consistency and confidence in prediction.<n>We propose a model selection procedure that includes epistemic and aleatoric criteria alongside existing accuracy and fairness criteria, and show that it successfully narrows down a large set of good models.
arXiv Detail & Related papers (2023-02-09T09:35:36Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Identifying Incorrect Classifications with Balanced Uncertainty [21.130311978327196]
Uncertainty estimation is critical for cost-sensitive deep-learning applications.
We propose the distributional imbalance to model the imbalance in uncertainty estimation as two kinds of distribution biases.
We then propose Balanced True Class Probability framework, which learns an uncertainty estimator with a novel Distributional Focal Loss objective.
arXiv Detail & Related papers (2021-10-15T11:52:31Z) - Recalibration of Aleatoric and Epistemic Regression Uncertainty in
Medical Imaging [2.126171264016785]
Well-calibrated uncertainty in regression allows robust rejection of unreliable predictions or detection of out-of-distribution samples.
$ sigma $ scaling is able to reliably recalibrate predictive uncertainty.
arXiv Detail & Related papers (2021-04-26T07:18:58Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.